
University of Tartu
Faculty of Science and Technology

Institute of Mathematics and Statistics

Artur Tuttar

Extending generalized linear models in insurance with
machine learning techniques

Actuarial and Financial Engineering
Master’s thesis (30 ECTS)

Supervisors: Meelis Käärik (PhD)
Julius Pau (MSc)

Tartu 2023

Extending generalized linear models in insurance with machine

learning techniques

Masters’s thesis

Artur Tuttar

Abstract. Machine learning models have shown promising results regarding their predictive
power. However, little to no information about their use of variables is available. The aim of this
thesis is to introduce and put into practice two ways of extracting this insight about variable use.
This insight is applied to produce interpretable models that predict in a similar way to underlying
machine learning models. The first three chapters give a theoretical overview of methods used
to build models and extract insight, and the last two chapters focus on applying these methods
to predict claim frequency using real-life insurance data.

Keywords: motor vehicle insurance, generalized linear models, interpretable machine learning.

CERSC research specification: P160 Statistics, operations research, programming, actuarial
mathematics.

Üldistatud lineaarsete mudelite edasiarendus kindlustusandmetel

masinõppe meetodite abil

Magistritöö

Artur Tuttar

Lühikokkuvõte. Masinõppe mudelid on viimasel ajal silma paistnud oma ennustusvõime
poolest. Paraku ei võimalda masinõppe mudelite ülesehitus aru saada, kuidas need mudelid
erinevaid tunnuseid kasutavad. See magistritöö tutvustab ja rakendab reaalelu andmetel kaht
meetodit, mis püüavad luua masinõppe mudelist interpreteeritavaid mudeleid. Töö kolmes
esimeses peatükis antakse teoreetiline ülevaade mudelitest ja meetoditest ning viimases kahes
peatükis rakendatakse tuvustatud meetodeid kahjusageduse hindamiseks reaalelu kindlustusand-
metel.

Võtmesõnad: sõidukikindlustus, üldistatud lineaarsed mudelid, interpreteeritav masinõpe.

CERCS teaduseriala: P160 Statistika, operatsioonianalüüs, programmeerimine, finants- ja
kindlustusmatemaatika.

1

Contents

Introduction 4

1 Generalized linear models 6

1.1 Model structure . 6

1.2 Modelling using GLM . 8

1.3 Parameter estimation . 9

1.4 Count and frequency data modelling . 11

2 Tree models 12

2.1 Decision trees . 12

2.1.1 Data partitioning . 12

2.1.2 Regression trees . 15

2.1.3 Advantages and disadvantages of trees . 17

2.2 Boosting . 17

2.2.1 Gradient descent . 18

2.2.2 Gradient Boosting . 19

2.2.3 XGBoost . 22

3 Machine learning insights 26

3.1 Measures and statistics . 26

3.1.1 Model performance metrics . 26

3.1.2 Variable importance . 27

3.1.3 Partial dependence . 29

3.1.4 Friedman’s H-statistic . 31

3.2 Model-Agnostic Interpretable Data-driven suRRogates (maidrr) 32

3.3 Rule ensemble . 34

4 Claim frequency modelling 38

4.1 Data and preprocessing . 39

4.2 Baseline models . 40

4.3 Modelling with GBM and XGBoost . 42

2

5 Machine learning applications 45

5.1 maidrr modelling . 45

5.2 Rule ensemble modelling . 47

5.3 Model comparison . 48

5.4 Discussion . 51

Conclusion 54

References 55

Appendix 59

A maidrr algorithms 59

A.1 maidrr surrogate model algorithm . 59

A.2 maidrr penalty tuning algorithm . 60

3

Introduction

Insurance companies focus on evaluating risks and providing coverage for them. The price of the
coverage should be fair and correspond to the underlying risk. The fair price is usually given
through rates applied to a given client. Currently, an interpretable statistical model is built and
used to estimate the rates. However, this approach is being challenged by machine learning.

Risk evaluation is usually split into two parts: estimating the number of claims (or claim fre-
quency) and estimating the claim amounts. This thesis focuses on the former. Currently, the
main tool for this task is an interpretable generalized linear model (GLM). However, several
machine learning algorithms have been shown to outperform this classical approach (Henckaerts
et al., 2019; Wüthrich, 2019). These machine learning models are inherently opaque and thus
bring value only in their accuracy. Thus, no insight applicable to the ratemaking can easily be
extracted from these models.

This thesis aims to introduce and put into practice two ways to extract insights from machine
learning models and produce interpretable counterparts to these models. Classic generalized
linear models will be compared to machine learning models and corresponding interpretable
models by modelling claim frequency for motor third party liability insurance. This thesis is
split into five chapters.

The first chapter focuses on the model setup and model structure for generalized linear models.
An overview of parameter estimation and claim frequency modelling using Poisson distribution
is also provided. The second chapter introduces decision trees and tree-based boosting ensemble
methods like gradient boosting machines (gradient tree boosting) and XGBoost. The third
chapter focuses on model metrics and introduces two ways to extract insight from machine
learning models: maidrr and rule ensemble.

In the fourth chapter, several models are used to predict the claim frequency for Latvian motor
third-party liability data, provided by If P&C Insurance AS, including GLMs, gradient boosting
machine (GBM) and XGBoost models. General model training procedures are also given. The
last chapter introduces models using the insights extracted from the machine learning models
developed in Chapter 4, and all models are compared using Poisson deviance and AIC. A small
discussion about working on this thesis is also given.

All data manipulation and model training is done using corresponding packages for statistical
computation software R (R Core Team, 2022). This thesis was written using Overleaf, an online
compiler for the LATEX typesetting system (Lamport, 1994).

4

The author would like to thank Julian Trufin and Roel Henckaerts for their correspondence
regarding references and suggestions. The author is also extremely grateful for the advice and
expertise provided by supervisors Meelis Käärik and Julius Pau. Lastly, the author is grateful
for the help of his peers: Joseph Haske, Mihkel Lepson and Nicholas Lupul.

Additionally, this version of the thesis is made publicly available in the spirit of sharing research
and showcasing the application of methods developed. However, appendices B, C, D, E, F contain
information and results that are considered a trade secret for If P&C Insurance AS and could be
used by other businesses besides them to adjust and improve ratemaking and pricing processes.
This version of the thesis does not include these appendices; any references and text hyperlinks
linking to these appendices have been altered to plain text.

5

1 Generalized linear models

One of the simplest ways to model a relation between independent variables (X1, X2, . . . , Xp)

and response variable (Y) is to assume a linear relation (in terms of parameters) between the
independent variables and response variable and fit an ordinary linear regression in the form of

µi = E (Yi) := E (Y |X1 = xi,1, X2 = xi,2, . . . , Xp = xi,p) = β0 +

p∑
j=1

βjxi,j ,

where xi,j is the realisation of the corresponding independent variable Xj for i-th observation.

In addition to the linearity assumption, ordinary linear regression assumes the normal distri-
bution for the residuals of the model and constant variance for those residuals. Therefore, we
have

Yi − µi = εi ∼ N(0, σ),

where σ is constant.

When looking at insurance data, we seldom observe the normal distribution. For example, the
number of claims is a positive integer or claim size can only be positive and have heavy tails.
Thus normal distribution assumption does not apply and other ways of fitting a relationship
between independent and dependent variables are needed.

A step up from ordinary linear regression was proposed in 1972. The generalized linear model
(GLM) introduced by Nelder and Wedderburn showed a way to compute maximum likelihood
estimates for parameters βj , j ∈ {0, 1, 2, . . . , p} for observations conditionally distributed ac-
cording to some exponential family distributions (Nelder and Wedderburn, 1972). These models
remain an insurance industry staple tool to this day because they are simple to understand and
easy to interpret.

1.1 Model structure

This subchapter is based on (de Jong and Heller, 2008).

A random variable Y is from the exponential family if the probability density function fY (x) is
of the form

fY (x) = c(x, ϕ) exp

(
xθ − a(θ)

ϕ

)
,

6

where θ and ϕ are the canonical and dispersion parameter of the exponential family, respectively.
For these distributions, it holds that

E (Y) = a′(θ), (1.1)

D (Y) = ϕa′′(θ),

where E (·) and D (·) denote the mean and the variance of a random variable, respectively.

The exponential family contains several distributions that are prevalent in insurance, including
the exponential distribution, gamma distribution, inverse Gaussian distribution, Poisson distri-
bution, binomial and negative binomial distributions.

The aim of the generalized linear model is the same as the ordinary linear regression model –
to describe the response variable (Y) in terms of independent variables (X1, X2, . . . , Xp) and
coefficients (β0, β1, . . . , βp).

However, the models have some key differences. For GLMs, we allow the response variable Y to
be from any exponential family, whilst for ordinary linear regression, the response is assumed to
be normally distributed. Secondly, for ordinary linear regression, a linear relationship between
the independent variables and conditional mean µi of the response is modelled, but for GLMs,
the transformed conditional mean g(µi) is modelled, where g(·) is called the link function. So
for GLMs, we have that

g(µi) = β0 +

p∑
j=1

βjxi,j =: ηi,

where ηi is called the linear predictor for the i-th observation.

Note that in the next two paragraphs, the i-th index is omitted since a general discussion about
the model structure is given.

The link function g(·) acts as the mediator for the linear predictor η and the response variable Y .
The choice of appropriate link function is not concrete for every exponential family distribution.
Rather, it is dictated by the data and the problem at hand. However, for every exponential
family distribution, a canonical link function can be found.

The canonical link function is a link function for which it holds that g(µ) = θ, where θ is the
canonical parameter of the exponential family function. The most common link functions are

• identity link: g(µ) = µ, which is the canonical link of the normal distribution,

• log-link: g(µ) = ln(µ), which is the canonical link of the Poisson distribution,

7

• power-link g(µ) = µp, which is the canonical link for gamma distribution if p = −1 and
inverse Gaussian if p = −2,

• logit-link g(µ) = ln
(

µ
1−µ

)
, which is the canonical link for binomial distribution.

Usually, the canonical link function is equal to the canonical parameter with respect to some
constant. For example, for gamma distribution, we have that θ = − 1

µ , but the canonical link
function for this distribution is g(µ) = 1

µ , so the −1 constant is omitted (de Jong and Heller,
2008).

However, sometimes when modelling claim size or frequency, a need to adjust for group size or
time period arises. For example, in the case of the number of claims: To estimate the average
number of claims in a period of time – claim frequency – the number of claims should be offset
(divided) by the exposure time of the policyholder since longer exposure to risk means more time
to have claims. In this case, using a log-link function would yield that

g
(µ
n

)
= ln

(µ
n

)
= η ⇐⇒ ln(µ) = ln(n) + η,

where variable n is called exposure and ln(n) is called the offset.

1.2 Modelling using GLM

This subchapter is based on (de Jong and Heller, 2008).

The following steps are done when fitting a GLM:

1. Choose a response distribution with probability density/mass function fY (·) from the
exponential family. The aim is to choose a response distribution tailored to the situation
or modelling problem at hand.

2. Choose a link function g(µ). As discussed in the previous subchapter, no concrete link
function can be given to any single situation as the data and problem at hand dictate the
appropriate link function, but a canonical link is a good starting point.

3. Choose independent variables X1, X2, . . . , Xp . The choice stems from the problem at hand
and can vary based on domain knowledge.

4. Collect the data of the observed values of the response variable y = (y1, y2, . . .)
T and

independent variables (x1,1, x2,1, . . .)
T , (x1,2, x2,2, . . .)

T , . . . , (x1,p, x2,p, . . .)
T (here xi,j

refers to the value of variable Xj for ith observation).

8

5. Estimate βββ = (β0, β1, . . . , βp)
T and ϕ (if unknown prior) through maximum likelihood or

its variant. A more detailed explanation of this is given in the next subchapter.

6. Assess the fit of the model by examining the predictions of the model and other model
diagnostics. The estimates of coefficients also show whether the independent variable
helps to determine the value of the conditional mean of the response. This step usually
restarts the fitting process as more information on the relation between the response and
independent variables is gained.

Usually, the data is already collected and the modelling is aimed at selecting the appropriate dis-
tribution, link function and explanatory variables. Fitting the model is done through maximum
likelihood methods, which are implemented in most statistical software.

1.3 Parameter estimation

This subchapter is based on (de Jong and Heller, 2008) and (Hardin and Hilbe, 2018). The
author has filled in some of the details missing from these references.

The maximum likelihood estimate (MLE) of a parameter θ is such a value of θ that the likelihood
of observing a given data is the biggest. We will now show how to get maximum likelihood
estimates for the coefficients (β0, β1, . . . , βp) of the generalized linear model.

Suppose we have a random variable Y belonging to the exponential family. Let y = (y1, y2, . . . , yn)

be an independant sample from random variable Y . Our aim is to find parameters βββ =

(β0, β1, β2, . . . , βp)
T , such that the likelihood of seeing this sample y is highest. As the real-

isation of Y in the sample are independent, then the likelihood L(βββ, ϕ,y) of getting this sample
can be written as the product of the values of the probability density or mass function evaluated
at sample observations

L := L(βββ, ϕ,y) =
n∏

i=1

f(θi, ϕ, yi) =
n∏

i=1

c(yi, ϕ) exp

(
yiθi − a(θi)

ϕ

)
,

here θi = θ(µi), µi = µ(θi) and g(µi) = g(µ(θi)) = ηi, where µ(·) and θ(·) are functions fixed
by the distribution (how the mean of distribution relates to the parameter of the distribution),
and ηi is the linear predictor for the ith observation. Using this and the fact the logarithm is
a monotonically increasing function (then the maximum of the function remains in the same
place), we can get the log-likelihood of the sample

ℓ := l(βββ, ϕ,y) = ln(L(βββ, ϕ,y)) =

n∑
i=1

(
yiθi − a(θi)

ϕ
+ ln(c(yi, ϕ))

)
.

9

Now, to find the set of parameters that maximise the log-likelihood, we have to take the derivative
in terms of parameters βββ. From this, we get that

∂ℓ

∂βββ
=

(
∂ℓ

∂β0
,
∂ℓ

∂β1
, . . . ,

∂ℓ

∂βp

)T

.

Now, using the chain rule for derivatives, we have the following expression for each βj :

∂ℓ

∂βj
=

n∑
i=1

(
∂ℓ

∂θi

)(
∂θ(µi)

∂µi

)(
∂g−1(ηi)

∂ηi

)(
∂ηi
∂βj

)
. (1.2)

Taking the partial derivatives of ℓ with respect to θi, we get

∂ℓ

∂θi
=

yi − a′(θi)

ϕ
, (1.3)

for all observations i = 1, . . . , n.

Now, since µi = E (Yi), then taking derivative of (1.1) with respect to the θi, we get

a′′(θi) =
∂µi

∂θi
. (1.4)

Using Formula (1.4) and the fact that θi = θ(µi) we get that

∂θ(µi)

∂µi
=

1

a′′(θi)
. (1.5)

Lastly, for a monotone link function g(µ) = η, there exists inverse function g−1(·) and then, we
get that

µi = g−1(ηi)

∂ηi
∂βj

= xi,j , (1.6)

for all observations (i = 1, . . . , n) in the sample.

Using Formulas (1.3), (1.1), (1.5) and (1.6) in Formula (1.2), we get that

∂ℓ

∂βj
=

n∑
i=1

(
yi − a′(θi)

ϕ

)(
1

a′′(θi)

)(
∂g−1(ηi)

∂ηi

)
xi,j

=
n∑

i=1

(
yi − µi

ϕa′′(θi)

)(
∂g−1(ηi)

∂ηi

)
xi,j ,

10

for all j = 0, . . . , p. Additionally, if the model includes the intercept term (β0) then xi,0 = 1 for
all i = 1, . . . , n, otherwise xi,0 = 0. Note that here ∂g−1(ηi)

∂ηi
is the derivative of the inverse of the

link function with respect to linear predictor ηi.

Now solving this set of derivative equations

∂ℓ

∂βββ
= 0,

gives us an estimate for the unknown coefficients β̂ββ. Since an analytical solution is difficult to
find, an approximation method, such as the Newton-Rapshon method, can be used.

1.4 Count and frequency data modelling

This subchapter is based on (Hardin and Hilbe, 2018).

In this work, the practical part will focus on estimating claim frequency from the data. This
will, in part, be done using GLM models with Poisson distribution. A short overview and details
to keep in mind when dealing with Poisson distribution are provided below.

The Poisson distribution is a discrete distribution which is often used to describe counts. The
probability mass function for Poisson distribution is

f(y, ξ) =
e−ξξy

y!
=

1

y!
exp (y ln(ξ)− ξ) ,

where ξ is a parameter with an intuitive meaning of frequency at which the event that is being
tracked happens.

From this form, we can clearly see that it is a part of the exponential family since we can
choose θ = ln(ξ), a(θ) = ξ = exp(θ), ϕ = 1 according to the definition of the exponential
family. A distinct property of Poisson distribution is that the expected value E (Y) and variance
D (Y) are equal (E (Y) = a′(θ) = ξ, D (Y) = ϕa′′(θ) = ξ). This is one of the most important
properties to check when modelling with the Poisson distribution. If D (Y) < E (Y), then
there is underdispersion in the data. Although not ideal, this is rarely taken into account when
modelling. If D (Y) > E (Y), then there is overdispersion in the data and usage of regular
Poisson distribution might lead to wrong conclusions. Other models like negative binomial or
quasi Poisson can be used in this case.

11

2 Tree models

Most machine learning techniques are non-parametric and usually quite complex "black-box"
methods, where data goes in and predictions come out. However, decision trees are not a black-
box technique. In fact, they produce an easily interpretable model.

A decision tree is a non-parametric supervised learning method which tries to predict the response
variable through a set of splits. These splits can be easily interpreted since they try to segment
the data into homogeneous subsets. A chain of these splits is called a rule and can easily showcase
a collection of data points that have somewhat similar independent variables and the response
variable (Molnar, 2022).

Decision trees are used as the key method for several more advanced machine learning methods.
These methods aim to use the predictive power of a tree but lower the variance of the trees
through ensembling. The ensembles use the decision trees as base learners and build a structure
containing these trees to augment the predicting power of a single tree. These tree-based en-
semble methods can be classified into two groups: boosting and bagging tree ensembles (Hastie,
Tibshirani, and Friedman, 2009).

In this chapter, we will first introduce a decision tree building method CART (Classification And
Regression Trees), and then showcase a way these trees can be used as an ensemble to fix some
of the shortcomings of a single decision tree. This work focuses on boosting ensembles of trees
through gradient boosting and its further development XGBoost (eXtreme Gradient Boosting).

2.1 Decision trees

This subchapter is based on (Hastie, Tibshirani, and Friedman, 2009).

To understand how decision trees work, we will first start with a tree-growing algorithm with
two independent variables. Then, we will generalise the algorithm to any number of variables.
The splitting for both categorical and numeric variables will be discussed, but only the regression
problem is explained, as this is the core problem of this work.

2.1.1 Data partitioning

Suppose we have a continuous response variable Y and two independent variables X1 and X2

taking values in the unit interval. Our aim is to partition the space X := X{1} ×X{2} (where
X{j} is the set of possible values Xj can take; in this case, X{1} = X{2} = [0, 1]) into regions,

12

Figure 1: CART "general" partitioning using straight
line boundaries. Taken from (Hastie, Tibshirani, and
Friedman, 2009), Figure 9.2.

Figure 2: CART recursive binary partitioning. Taken
from (Hastie, Tibshirani, and Friedman, 2009), Figure
9.2.

so the predicted response ŷi in a given region is close to the actual response value yi. There
are infinitely many and infinitely complex ways of splitting the space X up into such regions.
Decision trees use splits done using straight lines like xj = c. However, even using straight lines,
the partitioned regions can be hard to describe. An example of a "general" partitioning is given
in Figure 1.

To solve this, a restriction is put in place. Each split has to divide the space or subspace into
two distinct parts minimising the loss with respect to the response. This way of splitting is
called recursive binary split. The algorithm for recursive binary splitting is quite simple. At the
start, all possible splits of space X are considered. Since each region predicts a constant value
– usually region average – as the prediction for the response, the best split minimising the loss
to the response value Y is adopted, and the space is divided along this split. Now two separate
regions (subspaces) of X are formed, usually denoted as R1 and R2. However, as more splits
are done, the indices are renumbered for all regions. The previous step is repeated for the new
regions, and again the "best" split is chosen. The splitting takes place until some stopping rule
is triggered. For example, the maximum number of regions is reached.

In Figure 2, an example of a two-dimensional binary recursive split is given. First, a split
along X1 at value x1 = t1 is done. This results in two regions R1 = {(x1, x2) ∈ X|x1 ≤
t1} and R2 = {(x1, x2) ∈ X|x1 > t1}. The next split is done in region R1 along variable
X2 at value x2 = t2 producing two new regions R1 = {(x1, x2) ∈ X|x1 ≤ t1, x2 ≤ t2} and

13

Figure 3: CART partitioning as a recursive binary tree. Taken from (Hastie, Tibshirani, and Friedman, 2009), Figure 9.2.

R2 = {(x1, x2) ∈ X|x1 ≤ t1, x2 > t2} and previous R2 region becomes R3. After this, region
R3 is split along X1 at x1 = t3 resulting in regions R3 = {(x1, x2) ∈ X|x1 > t1, x1 ≤ t3}
and R4 = {(x1, x2) ∈ X|x1 > t1, x1 > t3}. Lastly, region R4 is split along variable X2 at
value x2 = t4, where resulting regions are R4 = {(x1, x2) ∈ X|x1 > t1, x1 > t3, x2 ≤ t4} and
R5 = {(x1, x2) ∈ X|x1 > t1, x1 > t3, x2 > t4}.

The resulting regression model for Y can be written as

ŷ = ftree(x) =
5∑

m=1

cmI[x ∈ Rm], (2.1)

where cm denotes the predicted value for the region Rm and x = (x1, x2) or the vector of realised
values of variables X1 and X2.

The dimensional partitioning plots work well for one and two-dimensional data. However, for
higher dimensional data, the space partitioning is not very informative. Another way to describe
this partitioning is by using a binary tree. The same two-dimensional example as for Figure
2 is represented as a binary tree in Figure 3. A splitting condition is displayed at each tree
node; if the observations abide by this condition, they go to the left child node. Otherwise, the
observation goes to the right child node. The tree plot also generalises well to higher dimensions
since, usually, at each node, only one variable is inspected.

14

2.1.2 Regression trees

In the previous subchapter, we looked into how decision trees form the regression model by
partitioning the data space into regions. However, the choice of best split and, in general, the
growing of trees was not considered in detail. In this subchapter, we will remedy that.

We are considering a regression problem for the response variable Y . Let now our data contain p

independent variables X1, X2, . . . , Xp for n observations. The partitioning algorithm described
in the previous subchapter should be able to decide what splitting variable and split point to use
automatically.

One way to do this would be to consider the regression model with M regions R1, R2, . . . , RM

with constant predictions cm in each region

f(x) =

M∑
m=1

cmI(x ∈ Rm),

where x = (x1, x2, . . . , xp). Using this regression, we choose a loss function and minimise it. The
choice of this function should stem from the problem at hand. When dealing with count data,
the Poisson deviance or Poisson log loss function should be minimised. As a simple example,
take the loss function to be the sum of squares,

∑
(yi − f(xi))

2. Using this loss function, it’s
easy to see that for any region Rm, the best prediction is the average of the response variable in
the region Rm, ĉm = avg(yi|xi ∈ Rm).

But now we still have the issue of choosing the regions, as searching for the best binary partition
with minimum possible loss is generally computationally infeasible. A greedy algorithm is used
to choose the splitting variable Xj and splitting value s. We want to partition space X =

X{1}×X{2}×· · ·×X{p}, where X{j} is the set of values variable Xj can have. Let us denote the
regions corresponding to split along variable Xj at splitting value s as Rm1(j, s) and Rm2(j, s)

(at the start of fitting, region indices m1 and m2 are not fully determined as further splits might
change them). Then we can write that

Rm1(j, s) = {(x1, . . . , xp) ∈ X|xj ≤ s} and Rm2(j, s) = {(x1, . . . , xp) ∈ X|xj > s},

if variable Xj is a numeric variable and then s ∈ R or

Rm1(j, s) = {(x1, . . . , xp) ∈ X|xj ∈ s} and Rm2(j, s) = {(x1, . . . , xp) ∈ X|xj ̸∈ s},

if variable Xj is categorical then s is a subset of values categorical variable Xj can take or, in

15

other words, s ⊂ X{j}. In both cases, we solve a minimisation problem

min
j,s

 ∑
i,xi∈Rm1 (j,s)

L(yi, ĉm1) +
∑

i,xi∈Rm2 (j,s)

L(yi, ĉm2)

 ,

where L(y, c) is a loss function and ĉm is the solution to minimisation problem

ĉm = argmin
c

∑
i,xi∈Rm

L(yi, c), (2.2)

where m ∈ {m1,m2}. In case of sum of squares, L(y, c) = (y − c)2 and ĉm = avg(yi|xi ∈ Rm).

Finding the best splitting variable Xj and splitting point s, we adopt this split on the data and
get two new regions from this. The same procedure is repeated on the resulting regions. This
process, if left unchecked, can lead to severe overfitting since as the tree grows in size (depth),
the tree relies on smaller and smaller subsets of the data. Overfitting leads to making predictions
that most likely capture the local effect of the independent variables on the response. The tree
structure, in that case, is too granular.

One way to combat overfitting is by introducing a complexity parameter. This parameter aims
to find the optimal tree size based on observed data. One of the possible complexity parameters
is the minimum decrease in the loss for a split. So if no split lowers the loss by the amount
fixed by this parameter, no further splits are done. This parameter has the downside of being
short-sighted since sometimes a seemingly useless split might lead to a good split down the line.

Another possible complexity parameter is cost complexity. In this case, we build the decision tree
to its highest depth, stopping when we reach a stopping rule like minimum node size. This deep
tree T0 is then pruned (internal nodes are collapsed) based on the value of this cost complexity.
Let T be a subtree of T0 obtainable through pruning. Then define

Nm(T) =
∑

i,xi∈Rm

1 (node support),

Qm(T) =
1

Nm(T)

∑
i,xi∈Rm

L(yi, ĉm) (node complexity).

Now we can define the cost complexity of tree T as

Cα(T) =

|T |∑
m=1

Nm(T)Qm(T) + α|T |,

where |T | is the number of leafs in the tree T . Now the parameter α acts as a tradeoff between
the tree size and its associated goodness of fit. It can be shown that through pruning T0, a unique

16

small subtree Tα that minimises Cα(T) exists and can be found through weakest link pruning.
That is, collapsing a node that produces the smallest per-node increase in

∑
mNm(T)Qm(T).

2.1.3 Advantages and disadvantages of trees

This subchapter is based on (Hastie, Tibshirani, and Friedman, 2009), (Molnar, 2022) and a
scikit-learn post (1.10. Decision Trees 2023).

In the previous two subchapters, a brief overview of the CART decision tree building algorithm
was given. Like with any model, this model also has its advantages and disadvantages.

In the case of the CART model, the decision trees are easy to visualise and, thanks to the building
process, also easy to interpret. For CART models, the categorical variables can be used without
any encoding (like dummy encoding) since CART uses a subset of variable levels to build the
splitting condition. Modelling the data set with rules allows for easy interaction modelling.

However, decision trees without proper pruning can easily overfit to the training data. Decision
trees are also highly unstable since a small change in the dataset might lead to a different tree
altogether. Although the piecewise constant approximation can, in theory, approximate any
function, to approximate linare relation a lot of splits are required. Finding a single globally
optimal tree can be computationally infeasible.

2.2 Boosting

The previous chapter showcased a powerful predictive method, but it had some shortcomings. To
combat some of the disadvantages present in the decision tree algorithm – chiefly the instability
– and to augment the predictive power of a single predictor, an ensemble of predictors can be
used. An ensemble is a collection of weak learners, such as low depth decision trees, all trained
and arranged in a structure to lower the variance of predictions.

Although an ensemble of any methods is possible, we will look at decision tree ensembles. Two
strategies are commonly employed for creating decision tree ensembles: bagging and boosting.
In the case of bagging, a lot of decision trees are built on bootstrapped samples of the training
data and the predictions of each tree are averaged to get an overall prediction. In boosting, weak
learners are used to learn from the predictions of the previous iteration sequentially. This work
focuses on boosting methods for decision trees.

17

Boosting can be done in several ways, like learning from prediction errors (Adaboost), gradient
descent or gradient boosting. In general, we can say that for boosting, we are searching for
prediction function F (x) in the form of an additive expansion

F (x) = β0 +

T∑
t=1

βtft(x),

where ft(x) is called the base learner, βt is called the expansion coefficient and T is the number
of learners or iterations. Ultimately, we want to minimise the within-sample loss and find all of
the base learners such that the sum of losses in the sample is minimal. In other words, we want
to find

F ∗(x) = argmin
F (x)
L(F),

where L(F) =
∑n

i=1 L(yi, F (xi)). This can seldom be done all at once so usually an iterative
process is used instead. The following subchapters will describe a boosting technique called
gradient boosting in greater detail.

2.2.1 Gradient descent

This subchapter is based on (Friedman, 2001).

In order to understand gradient boosting, we first need to have an overview of gradient descent.
Since machine learning algorithms are made to optimise some loss or error function, then a way
to find a global minimum is needed. Since minimisation requires us to find partial derivatives,
set them to 0 and solve the equation, then usually, the equations tend to be quite complex.
Gradient descent aims to approximate the solution to this kind of problem.

The idea of gradient descent is simple. First, we take a random guess of what a parameter,
in terms of which we want to optimise, is. Next, calculate the negative gradient and update
the chosen parameter values so the function value is smaller, and hopefully closer to the global
minimum.

In our case, consider the single observation loss function L(yi, ŷi), where ŷi = F (xi) is the
prediction for ith observation (i = 1, . . . , n). Denote the sum of loss for the whole dataset as

L(F) :=
n∑

i=1

L(yi, F (xi)).

We want to find the function F ∗ that minimises the sum of losses L. Note that in the upcoming
discussion the subscript, i from xi, is omitted since the gradient is calculated and adjusted for
each data point separately.

18

Let us search for the function F ∗ in the form of

F ∗(x) =
T∑
t=0

ft(x),

where f0(x) is a fixed initial guess and ft(x), 0 < t ≤ T are the incremental improvements. Let
Fτ (x) =

∑τ
t=0 ft(x) be the incremental prediction function at step τ . Define then

ft(x) = −ρtgt(x),

where ρt ∈ R is the learning rate and

gt(x) =
∂L

∂ŷ
(y, Fτ−1(x))

is the gradient of the loss function evaluated at the previous incremental step Fτ−1.

The learning rate ρt can be given in several forms. A constant learning rate ρt = ρ ∈ R,∀t ≥ 0 is
one of the most widely adopted forms in software, but setting the constant value too low might
lead to very slow convergence while setting it too high might lead to a method that does not
converge or does not converge to the global minimum.

Another way to fix the learning rate is to reduce it exponentially with each iteration. In this
case, you would start with a constant learning rate ρ0 = ρ and at each step t you reduce it by
some coefficient α ∈ (0, 1). So we get the generic formula ρt = ραt.

Overall, we can write that the resulting approximation to the solution function F ∗(x) is in the
form of

Ft(x) = Ft−1(x)− ρtgt(x).

As each step reduces the gradient by some amount, a way to stop the process is required. The
usual stopping rules are a maximum number of boosting iteration T or a threshold for the size
of incremental step ft(x).

2.2.2 Gradient Boosting

This subchapter is based on (Friedman, 2002).

The setup for gradient boosting is the same as for gradient descent. Namely we want to find
a function F ∗(x) such that sum of loss functions L(F ∗) =

∑n
i=1 L(yi, ŷ

∗
i) is minimised, where

ŷ∗i = F ∗(xi). So, in other words
F ∗(x) = argmin

F (x)
L(F).

19

For gradient descent, the loss function for each observation was sequentially optimised by the
gradient produced on the loss function. Gradient boosting takes another approach again using
an additive expansion, but in this case, we search for the function F (x) in the form of

F (x) =

T∑
t=0

βth(x,at),

where h(x,a), is a simple, weak learner function of independent variables x with parameters
a = (a1, a2, . . .). The expansion coefficients βt and function parameters at are derived from the
training data in a stage-wise manner. Again an initial guess for the parameters is given at step
t = 0 and then, at each iteration step t = 1, 2, . . . , T , the next set of parameters is found as a
solution to

(βt,at) = argmin
β,a
L(Ft−1(x) + βh(x,a)). (2.3)

The solution to this function is found through a two-step procedure. First, a least squares
approach is used to estimate the parameters of the weak learner,

at = argmin
a,ρ

n∑
i=1

[ỹi,t − ρh(xi,a)]
2,

where ỹi,t is the negative gradient evaluated at the previous iteration,

ỹi,t = −
∂L

∂ŷ
(yi, Ft−1(x)),

and ρ ∈ R is the weight of the given base learner in the ensemble.

Secondly, the resulting optimal at is then used in (2.3) to form a one parameter optimisation
problem

βt = argmin
β
L(Ft−1(x) + βh(x,at)). (2.4)

Gradient tree boosting (gradient boosting machine) is a special case of the method described
above. It fixes the structure of a weak learner to be a tree with M terminal nodes splitting the
data into regions R1, R2, . . . , RM . As specified in the previous subchapter, the regression tree
predicts a constant ĉm,t for the whole region that is the solution to (2.2). Then we can write

h(x, {Rm,t}Mm=1) =

M∑
m=1

ĉm,tI(x ∈ Rm,t),

where Rm,t is the m-th region of the t-th decision tree (our weak learner). Note that in this case,
the model parameters would be the set of splitting variables with indices j ⊂ {1, 2, . . . , p} and

20

their split points s, which can be calculated in the same manner as discussed previously. These
parameters are enough to determine the corresponding regions Rm,t for t-th iteration.

As the regions are disjointed, then the solution to (2.4) simplifies to a location estimation problem
within each region Rm,t for loss L

γm,t = argmin
γ

∑
i,xi∈Rm,t

L(yi, Ft−1(xi) + γ).

The updated prediction function for the t-th iteration in region Rm,t then becomes

Fm,t(x) = Ft−1(x) + ν · γm,tI(x ∈ Rm,t),

where ν ∈ (0, 1] acts similarly as the learning rate ρ from gradient descent, fixing the amount
a given tree can learn from its previous errors. Putting all of these steps together gives us the
algorithm for generalized boosting with decision trees (Algorithm 1).

Algorithm 1 Generalized gradient tree boosting
F0(x) = argminγ

∑n
i=1 L(yi, γ)

for t = 1 to T do
ỹi,t = −∂L

∂ŷ
(yi, Ft−1(x)), i = 1, . . . , n

Find regions R1,t, . . . , RM,t for decision tree with M terminal nodes using
ỹt = (ỹ1,t, . . . , ỹn,t) as the vector of response values
γm,t = argminγ

∑
i,xi∈Rm,t

L(yi, Ft−1(xi) + γ), for m = 1, . . . ,M

Ft(x) = Ft−1(x) + ν ·
∑M

m=1 γm,tI(x ∈ Rm,t)

end for

This algorithm was first introduced by Friedman in 1999 and has since been used and studied
heavily (Friedman, 2001). The original algorithm was somewhat computationally and memory
intensive, depending on the selected decision tree. But over the years, several updates to the
algorithm have been made.

One of these updates is inspired by the work of Breiman on "bagging" (Breiman, 1996). Breiman
proposed a mix of bagging and boosting in 1999 (Breiman, 1999). This would include a random
sample of full training data as the starting point of the decision tree building and out-of-bag
residuals for boosting steps. Friedman adopted these ideas and updated the gradient boosting
algorithm (Algorithm 1) accordingly, calling the new algorithm "stochastic gradient boosting".
The full algorithm is available in (Friedman, 2002). This allowed for a reduction in computation
steps and memory usage proportional to the sampling fraction used.

21

2.2.3 XGBoost

This subchapter is based on (Chen and Guestrin, 2016).

A bigger set of upgrades to gradient boosting was introduced in (Chen and Guestrin, 2016),
with the introduction of XGBoost. XGBoost can be considered an overhaul of the idea and
algorithm proposed by Friedman. Chen and Guestrin modernised the method by optimising the
tree-building process. The proposed upgrades stem from two sides, the underlying mathematical
and algorithmic changes and hardware-related optimisation.

The notation for this chapter closely follows the notation presented in the previous chapters,
where Ft(x) is the prediction function for gradient tree boosting, cm is the prediction for the
region Rm, L(y, ŷ) is the chosen loss function and M is the number of terminal nodes.

A list of mathematical and algorithmic improvements proposed is given below.

• The regularisation of the weak learner in the objective function. When building
trees, in addition to a differentiable convex loss function L(y, ŷ), a penalty term is included.
The objective function, in this case, is

L(F (x)) =
n∑

i=1

L(yi, ŷi) +
T∑
t=1

Ω(Ft),

where ŷi = F (xi) and the penalty function is defined as

Ω(Ft) = κM +
1

2
Λ

M∑
m=1

ĉ2m,

with penalty parameters κ and Λ .

• Using a Taylor series approximation for the objective function. The objective
function for the tree for iteration t (denoted Tt) is defined as

Lt =
n∑

i=1

L(yi, Ft−1(xi) + Ft(xi)) + Ω(Ft),

but a second-order Taylor approximation can be used to optimise the new objective quickly

L(t) =
n∑

i=1

[L(yi, Ft−1(xi)) + giFt(xi) +
1

2
hiF

2
t (xi)] + Ω(Ft),

where
gi =

∂L

∂ŷ
(yi, Ft−1(xi)) and hi =

∂2L

(∂ŷ)2
(yi, Ft−1(xi)). (2.5)

22

Since L(yi, Ft−1(xi)) is a constant in terms of Ft(x), it can be omitted from the objective
function. Additionally, substituting Ω(Ft) and rearranging the sums we then get

L̃(t) =
M∑

m=1

 ∑
i,xi∈Rm,t

gi

 ĉm,t +
1

2

 ∑
i,xi∈Rm,t

hi + Λ

 ĉ2m,t

+ κM,

where Rm,t is the m-th region from t-th iteration tree.

From this, we can get that the optimal leaf prediction ĉ∗m,t should approximately be

ĉ∗m,t ≈ −

∑
i,xi∈Rm,t

gi∑
i,xi∈Rm,t

hi + Λ
.

From this, a new scoring function for a tree Tt is proposed using the approximated objective
function L̃(t) and the optimal leaf prediction ĉ∗m,t

L(t)(Tt) = −
1

2

M∑
m=1

 ∑
i,xi∈Rm,t

gi

2

∑
i,xi∈Rm,t

hi + Λ
+ κM.

To evaluate a split, a greedy algorithm starts from a single leaf and adds branches to the
tree. The objective function for a split can be written as

Lsplit =
1

2



 ∑
i,xi∈RR

gi

2

∑
i,xi∈RR

hi + Λ
+

 ∑
i,xi∈RL

gi

2

∑
i,xi∈RL

hi + Λ
−

 ∑
i,xi∈RR

⋃
RL

gi

2

∑
i,xi∈RR

⋃
RL

hi + Λ


− κ,

where RR and RL are the corresponding right and left regions for a considered split.
(RR

⋃
RL) is then the original leaf the split was considered for.

• Column subsampling is implemented. To combat overfitting, a given tree is allowed
to choose only from a random subset of available columns to do a split with. This forces
the model to sometimes build a tree with variables it would otherwise never use.

• Approximate splitting algorithm. For generic gradient boosting, to find the best
splitting value s for the independent variable Xj , all possible splits are considered. This

23

is a called an exact greedy algorithm, and it is computationally demanding as efficiency is
tied to the available memory. Instead of the exact search, an approximation – percentiles
of variable values – of the possible candidate values is produced and evaluated. XGBoost
has two variants of this algorithm: the global variant makes all of the candidate splits at
the start of fitting and the local variant that re-proposes the candidates after each split.

• A weighted quantile sketch is used. This allows the subsetting of the independent
variable values using the second-order gradient values hi from Formula (2.5) for each
observation. Let Dj = {(x1,j , h1), (x2,j , h2), . . . , (xn,j , hn)}. This denotes the pair of values
for the variable Xj and second-order gradient hi in the training set. Now, define

rj(z) =
1∑

i,(xi,j ,hi)∈Dj

hi

∑
i,(xi,j ,hi)∈Dj ,x<z

hi,

which represents the proportion of the sum of second-order gradients hi for instances where
the value of variable Xj is less than z. The aim is to find such candidates (sj,1, sj,2, . . . , sj,l)
that satisfy

|rj(sj,k)− rj(sj,k+1)| < ε, ∀k = 1, . . . , l − 1,

where 1
ε ≈ l (maximum number of splits considered). Note that sj,1 = min

i
xi,j and

sj,l = max
i

xi,j .

This complements the objective function since the values of hi can then be considered as
weights

L̃(t) =
n∑

i=1

1

2
hi

(
Ft(xi)−

gi
hi

)2

+Ω(Ft) + constant,

giving us the weighted squared loss with the label gi
hi

and weights hi

• The fitting procedure is sparsity aware. Real-world data is often sparse due to
missing data, frequent zero entries or variable encoding. This kind of missing data is not
useful when building trees but still has to be assigned to a node in a tree. To do this,
a default direction for sparse data is used where the optimal direction is learnt from the
data.

In addition to the mathematical and algorithmic improvements, some hardware optimisations
are also implemented.

• Column blocks are used. Column value sorting and learning is one of the most memory-
intense parts of the algorithm. For an exact greedy search, all values of the column have

24

to be read in memory, potentially requiring a lot of memory in the case of large datasets.
To alleviate this, the column data is stored and processed in "blocks" since the augmented
weighted quantile function allows for the processing of the column in parts. The usage of
column blocks also allows for parallel computation of these blocks, speeding up the search
for optimal splits.

• The algorithm is cache-aware. The column blocks allowed for parallel computation
for split finding, but this results in non-continuous memory access to retrieve row-specific
gradient statistics. Non-continuous memory access slows down the program since the
read/write cycle of other computations would need to be queued. The solution to this is
easy – using an appropriately sized column block that allows the gradient statistics to be
fit in the CPU cache.

• Blocks for Out-of-core computations to effectively use the machine’s resources.
A block reading and writing system is used when the data does not fit into the main
memory. All the data is stored on disk in blocks and accessed sequentially. This is,
however, limited by the disk read and write speeds. To speed this up, the stored data
blocks are compressed and decompressed on the fly, exchanging the disk usage for CPU
usage. Additionally, the data blocks are stored on multiple disks (where available), and
different threads of the CPU are assigned to access the data allowing for more streamlined
read-and-write sequencing.

All of these augmentations combine to make the methods an order of magnitude faster, allow-
ing for excellent out-of-core and distributed system performance with basically no predictive
performance drawbacks.

25

3 Machine learning insights

In this work, we want to showcase a way to leverage the good predictive power of machine
learning models in augmenting a standard GLM. Machine learning has been able to uncover
a deeper understanding of the underlying trends in the dataset being modelled. These deeper
trends and the relationships between independent variables and response variables are most
often obfuscated and there is no clear way to showcase how a prediction from a machine learning
method comes about. Recently, a need to understand the underlying decision-making of machine
learning methods has become relevant, and research into interpretable machine learning has taken
off (Murdoch et al., 2019).

In this chapter, we will discuss ways to learn from machine learning methods by visualising the
use of variables and applying this knowledge in a semi-automatic way to augment the underlying
GLM. Two methods are discussed: one focuses on insight extraction through partial dependence,
and the other leverages the underlying structure of decision trees, extracting the splitting rules
and modelling the response using those rules.

3.1 Measures and statistics

This subchapter is based on (Molnar, 2022) and (Hastie, Tibshirani, and Friedman, 2009).

This subchapter discusses several measures and metrics used for the insight methods and model
comparison.

3.1.1 Model performance metrics

In machine learning, many different models can solve a single problem. Many hyper parameters
can and should be tuned inside these machine learning models to find the best fit for the data.
There is a need for some metric to quantify how well a model is performing.

One of the most popular metrics used is the model’s test set loss or deviance. When training a
machine learning model, a common approach is splitting the data into two distinct parts: training
and test data. The aim is to have a previously unseen bit of data, the test set, that acts as an
equal playing field for all models. First, the model prediction function F (x) is estimated based
on the training data, and then an appropriate (based on the modelling problem) loss function
L(y, F (x)) is used to calculate the total loss for the test set,

∑nt
i=1(L(yi, F (xi)). Note that for

some problems, the total loss is not the most appropriate metric to minimise, so deviance can

26

be used instead. For example for a Poisson distributed response variable, Poisson deviance for
an i.i.d. sample of observations {(yi,xi)}n1 can be calculated as

DevP(F) = 2

n∑
i=1

[
yi ln

(
yi

F (xi)

)
− (yi − F (xi))

]
. (3.1)

Total loss or deviance based model comparison has one main issue. Namely, as the complexity
of the underlying model increases, the total loss or deviance of that model will stay the same
or decrease. This is similar to the case where increasing the number of linear terms always
lowers or keeps the deviance of the linear model. For machine learning models, this is not
a significant issue since most of the models have basically an infinite (saturated) number of
parameters (splitting variables, splitting values, etc.). However, this issue persists for parametric
models like generalized linear regression.

A way to get around this for parametric models is to introduce a cost for the number of parameters
in the model. For in-sample error prediction, the Akaike information criterion (AIC) can be
used. For parametric models using likelihood, we have

AIC = −2 · l(βββ, ϕ,y) + 2p. (3.2)

The best model can be again chosen by having the lowest AIC. As the number of model
parameters is penalised, the lower AIC ensures that predictive power of the model increased
more than just the improvement due to the increased complexity.

3.1.2 Variable importance

For models with p independent predictor variables, seldom are all variables equally relevant
for predicting. For generalized linear models, an estimate of a variable’s coefficient βi and
its variance D (βi) is enough to tell if that variable is statistically significant for predicting the
response variable through the use of a test such as the likelihood ratio test. However, for machine
learning methods, this kind of setup is missing.

One possible solution to determine what predictors are relevant to predicting the response is
called variable importance. There are several types of variable importance, but in this work, we
look at relative variable importance and permutation variable importance.

In the case of relative variable importance, we want to know how "relevant" different values
of variable Xp are in predicting the response variable. For a single decision tree, the squared

27

Figure 4: Relative variable importance for gradient
boosting machine computed on training data.

Figure 5: Permutation variable importance for gradient
boosting machine computed on training data.

relative relevance of variable Xp can be expressed as the sum of squared improvements in the
loss for all splits in a tree using this variable. In other words, we can write

IR2
p(T) =

J−1∑
j=1

i2jI(v(j) = p),

where J is the number of internal nodes in the tree, v(j) is the index of the splitting variable
for node j, and i2j is the squared improvement in the loss for adopting a given split. This single
decision tree relevance generalises well to additive tree expansion models since an average across
all trees in the expansion shows the same phenomena. Then we can write that for tree ensembles

IR2
p =

1

T

T∑
t=1

IR2
p(Tt),

where T is the number of decision trees in the additive expansion. Relevance is simply the
square root of the corresponding squared relevance. As this measure is relative to the data it was
fitted on, it is usually given as proportion (sums to 100). An example of scaled relative variable
importance for a gradient boosting machine is shown in Figure 4.

Permutation variable importance is a little different from relative variable importance even
though they try to quantify the same thing. For permutation variable importance, we take
the variable Xp, permutate the realised values xp = (x1,p, x2,p, . . . , xn,p)

T in the dataset and
see how much the loss of the dataset changed. Based on the increase in loss, we can see how
important the given variable value was in making the prediction for a given observation.

To calculate permutation variable importance, we take the prediction function F (x) and the loss
function L(y, F (x)) and compute the sum of losses on the dataset Lorig =

∑n
i=1 L(yi, F (xi)).

28

Then permutate the variable Xp in the dataset to get Xpperm and compute the sum of losses with
the permuted variable Lp =

∑n
i=1 L(yi, F (xiperm)), xiperm denotes the ith observation with the

permutated variable Xpperm . Permutation importance is then their ratio

IPp =
Lp
Lorig

,

or their difference
IPp = Lp − Lorig.

Similarly to relative importance, this value is usually presented as a proportion. An example of
permutation importance for a gradient boosting machine is shown in Figure 5. Note that the
order of variable importance is different for different measures, but overall the same variables are
considered important.

3.1.3 Partial dependence

Now that we have tools to choose a good model and to see what variables the model relies on to
make predictions, we still need a way to visualise how the different values of a given variable or
even a collection of variables affect the prediction. For a linear regression model, this boils down
to interpreting the different regression coefficients βj .

For example, in the case of modelling claim frequency using GLM with Poisson distribution and
log-link function, we could say something along the lines: "Having two subjects for which all
variables expect Xj are the same and numeric variable Xj differ by 1 unit, then the estimated
claim frequencies differ by a factor of exp(βj)". For categorical variable Xk, the estimated claim
frequency would differ by a factor of exp(βk) when compared to the baseline categorical level.

As evident from previous subchapters, here again, machine learning does not have such simple
interpretable tools. However, one somewhat interpretable tool exists - partial dependence. Partial
dependence shows the average prediction for different values or unique combinations of values of
fixed variables where the effect of not fixed variables is averaged out.

Take a vector of indices for fixed variables S ⊂ {1, 2, . . . , p}. Let C be its complement set, so that
S
⋃
C = {1, 2, . . . , p}. Let XS denote the variable space defined by the variables with indices S

and let XC be the complement variable space such that they can be combined to make original
variable space X. The prediction function can be written as F (x) = F (xS ,xC), where x ∈ X,
xS ∈ XS and xC ∈ XC . Partial dependence for values xS ∈ XS can then be defined as

PD(xS) = E (F (xS , XC)) ,

29

Figure 6: GBM partial dependence for a numeric vari-
able estimated from a sample of 105 rows of training
data

Figure 7: GBM partial dependence for ordered cate-
gorical variable estimated from a sample of 105 rows of
training data

where XC is a random vector from complement space XC . In other words, partial dependence
of fixed variable values xS is the expected value of the prediction function F (xS , XC) in the
probability space defined by complement variables XC . Using real data, partial dependence can
easily be estimated by

ˆPD(xS) =
1

n

n∑
i=1

F (xS ,xi,C),

where xS is an element of observed combinations from space XS and xi,C denotes the values of
the complement set variables for the i-th observation. Note that partial dependence is usually
calculated sequentially over unique values of the fixed variables present in the data, then the
particular values of partial dependence can be aggregated into a vector or easily plotted.

Single variable partial dependence uses all unique values of that variable present in the data
(grid of values) and calculates the corresponding average prediction over all other variables. For
numeric variables, plotting partial dependence produces a trailing plot showcasing the change in
partial dependence value based on values of numeric variables. For categorical variables, plotting
partial dependence produces a scatter plot showcasing the partial dependence value for each level
of categorical variable. For two variable partial dependence, a heat map (if both are numeric) or
multiple line plot (if one is numeric and the other is categorical) or level faceted point plots (both
are categorical) can be used. There is no easy or interpretable way to visualise higher dimensional
partial dependence. Examples of one variable partial dependence plots are presented in Figures
6 and 7.

From the averaging, we can see that if we fix only one variable Xj (j ∈ {1, 2 . . . , p}) then, for
all unique values of variable Xj , we go through all values from the dataset therefore, the partial
dependence calculation is at least O(n2) complexity. Considering more than one variable, the

30

number of possible combinations grows by up to another factor of n, so in total complexity would
be O(n3). In general, the complexity for partial dependence of s variables is O(ns). This is very
computationally intensive, even for moderately sized datasets.

3.1.4 Friedman’s H-statistic

This subchapter is based on (Friedman and Popescu, 2008).

One of the key ways to model non-linear relations in linear regression is through the use of
interaction. Interaction allows the value of one variable to affect the effect of another variable or
even variables. In predictive modelling, interactions add a lot of complexity to a model but can
also significantly improve the predictive power of a model.

The decision trees are able to model interaction effects through consecutive splits on a single
tree, thus leading to a structure that inherently models interactions. This property carries over
to any other tree-based models (but not exclusively).

In their paper (Friedman and Popescu, 2008), the authors defined a statistic that quantifies the
presence and/or strength of an interaction between variables used in predictive function F (x).
Let all partial dependence be centred (mean removed). They showed that the partial dependence
of two variables Xj and Xk could be decomposed into

PD(x{j,k}) = PD(x{j}) + PD(x{k}),

if variables do not interact. Here x{j,k} ∈ X{j,k},x{j} ∈ X{j} and x{k} ∈ X{k}. Then, a statistic
can be defined and empirically estimated using the empirical estimates of partial dependence on
the dataset,

H2
{j,k} =

∑n
i=1

[
ˆPD(xi,{j,k})− ˆPD(xi,{j})− ˆPD(xi,{k})

]
∑n

i=1(
ˆPD(xi,{j,k}))2

, (3.3)

where ˆPD(xi,{j,k}) is the partial dependence value for interaction combination present for ob-
servation xi and ˆPD(xi,{j}) and ˆPD(xi,{k}) are single variable partial dependence values for
variable values present for observation xi. This H-statistic showcases the fraction of variance
not explained by a single variable partial dependencies PD(x{j}) and PD(x{k}). If the value
is 0, then no interaction between variables Xj and Xk is present in prediction function F (x).
Otherwise, larger values correspond to a "stronger" interaction between these variables.

For a single variable Xj , we can also check if any interactions with this variable are present in

31

F (x) by using another version of H-statistic (3.3),

H2
j =

∑n
i=1

[
F (xi)− ˆPD(xi,{j})− ˆPD(xi,\j)

]
∑n

i=1(F (xi))2
, (3.4)

where ˆPD(xi,\j) denotes the interaction partial dependence value for all variables expect jth
variable for combination present in observation xi.

Friedman and Popescu also proposed to combine the numerator of (3.3) and denominator of
(3.4) to get a version of H-statistic showcasing the importance of a particular interaction in the
prediction model. Additionally, the authors showed that this statistic could easily be expanded
to higher dimension interactions. In this work, we only focus on two variable interactions.

3.2 Model-Agnostic Interpretable Data-driven suRRogates (maidrr)

This subchapter is based on (Henckaerts, Antonio, and Côté, 2020).

Partial dependence is one way to quantify the way the machine learning model uses one variable.
In 2020, Roel Henckaerts et al. proposed a method using partial dependence, segmenting and
clustering it, to produce a surrogate model capable of mimicking the prediction function F (x) of
any machine learning model, thus being a model-agnostic approach. A workflow of the maidrr
process can be seen in Figure 8.

Figure 8: maidrr process for transforming black box methods into interpretable GLM. Taken from (Henckaerts, Antonio,
and Côté, 2020) Figure 2.

Assuming a satisfactory machine learning "black box" method is fit to the data, we first extract
the partial dependence for independent variables in the data. The same calculation is used as
described previously, but since the algorithm is computationally very demanding, this is usually
done over a smaller sample of training data. Note that since we want to average out the effect of
other variables, the Monte-Carlo approach of oversampling for smaller initial datasets might lead
to a better estimation of the distribution of complement variables, thus reducing the variance of
partial dependence.

32

After partial dependence is calculated, a dynamic programming clustering K-means algorithm
is used to make optimal (for a given K) and reproducible clusters of partial dependence effects
(Wang and Song, 2011). These clusters are bins of values for numeric variables or sets of cate-
gorical levels for factor variables. Note that only sequential factor variable levels can be grouped
for ordered factor variables. The clustering produces a segmentation of independent variables
allowing for a constant to be fit to a given segment, representing its effect on the response
variable.

To find an optimal number of groupings for all independent variables would be a p-dimensional
problem. However, maidrr authors proposed the use of penalised loss function to find the optimal
number of groups k̂{j}, j = 1, . . . , p. The process is simple and starts by taking a random guess
for the number of groups for a variable.

Suppose variable Xj was grouped into k{j} groups. Let zi∗,{j} = ˆPD(xi∗,{j}) denote the partial
dependence value of i∗-th unique value of variable Xj , i∗ ∈ {1, . . . ,m{j}}, where m{j} is the
number of unique values, and let z̃i∗,{j} be the average partial dependence value of the group the
unique value xi∗,{j} belongs to.

The optimal number of groups k̂{j} can be found by solving

argmin
k{j}

m{j}∑
i∗=1

wi∗,{j}(zi∗,{j} − z̃i∗,{j})
2 + λ ln(k{j}), (3.5)

where wi∗,{j} is the proportion of observations that have value xi∗,{j}. Using the weighted mean
squared error in Formula (3.5) encourages good groupings for frequently occurring feature values.
Low (high) values of penalty parameter λ allow for more (less) groups for a given feature, resulting
in a smoother (coarser) approximation of the underlying partial dependence effect.

Examples of possible groupings for a numeric variable are presented in Figure 9, and for ordered
categorical variable is presented in Figure 10. The figures indicate grouping by the vertical lines
for numeric variables and as different symbols for categorical variables. Additionally, the weight
of given feature values is displayed as the line colour for the numeric variable (darker means
more) and the size of the symbol for the categorical variable (bigger means more).

Through grouping of partial dependence, we find a possible segmentation of independent variables
in space X, thus turning all variables into categorical form by introducing additional parameters
for numeric variables and taking away some "not needed" parameters for categorical variables.
After grouping, a surrogate model (GLM) is fit. Since all variables end up as categorical levels,
the fitted GLM can easily be transformed into a fixed-size decision table which is very transparent
and interpretable.

33

Figure 9: Example of grouping numeric variable par-
tial dependence into 5 groups (NA values as a separate
group).

Figure 10: Example of grouping ordered categorical
variable partial dependence into 6 groups.

In addition to main effect modelling, interaction can also be modelled using H-statistic described
in the previous subchapter. H-statistic is used to find possible interactions, and partial depen-
dence of interactions with suitable strength (above a value defined by the modeller) are grouped
using the same procedure as above. The effect of the corresponding interaction variable is then
interpreted as an additional effect on top of the main effects (interaction effect is centred at 0,
which indicates no effect). Note that in this case, the main effect penalty and interaction effect
penalty can be different and will be denoted by λmain and λintr.

To find the best possible surrogate, maidrr focuses on 4 hyperparameters: penalties λmain and
λintr, maximum number of groups k and interaction strength cut-off value h. Penalties are tuned
by a grid search using K-fold cross-validation (data is split into K parts, one part is left out
as the validation part, and the model is trained on the rest of the data) by finding a GLM
model minimising the desired loss function with respect to the original response variable (not
machine learning predictions, like other surrogate techniques). First tuning of λmain is done,
and depending on the features selected (if k̂{j} = 1, the feature is excluded from the surrogate
model) λintr is then tuned. Hyperparameters k and h focus on the complexity of the surrogate
and depend on the desired outcome. If a more complex model is suitable, then a high value of k
and a low value of h allow for smoother main effects and more interactions. Opposite values of k
and h allow for a coarser surrogate. The algorithm for maidrr surrogate is present in Appendix
(A.1) and for penalty tuning in Appendix (A.2).

3.3 Rule ensemble

This subchapter is based on (Friedman and Popescu, 2008).

34

There are almost countless ways to model a response variable, stemming from the choice of
methods and parameters for these methods. Seldom are these methods easily interpretable. In
some industries, the ability to interpret the models and make general business decisions based
on those models is needed. Thus an interpretable machine learning method is needed.

Decision trees, as shown in Chapter 2, are rule based methods which, on their own, are very
interpretable but also highly unstable. To fix this, tree ensembles can be used at the cost
of interpretability. In 2008, Friedman and Popescu proposed a way to leverage these highly
interpretable rules of tree ensembles to make a model with predictive power comparable to those
ensemble methods.

When working with ensembles, we are searching for a predictive function F (x) as an additive
expansion

F (x) = β0 +
T∑
t=1

βth(x,at), (3.6)

where h(x) is the "base learner" prediction function with parameters at and combination pa-
rameter βt. When working with tree ensembles, "base learner" h(x,at) is a decision tree with
M terminal nodes and parameters at are the splitting variables with indices j ⊂ {1, . . . , p}, and
splitting points s, which are enough to define the M terminal regions.

In their paper (Friedman and Popescu, 2008), the authors proposed that letting go of the un-
derlying decision tree branching structure and just using the rules produced from decision trees
as the "base learners" could produce a highly interpretable method. Denote X{j} as the set of
all possible values of variable Xj and vj,k be a subset of these values, vj,k ⊂ X{j}. A rule base
learner is then

rk(x) =

p∏
j=1

I(xj ∈ vj,k),

where I(·) is the indicator function and k is index of the rule used. Using product over all
variables results in a two-valued base learner (rk(x) ∈ {0, 1}), taking non-zero value only if all
variables Xj , j = 1, . . . , p belong to their specified subset of values vj,k. For orderable variables
(numeric and ordered categorical variables), the subset of values is an interval of values

vj,k = (tj,k, uj,k],

where tj,k and uj,k are the lower and upper limit values (categorical levels), respectively. For
unorderable categorical variables, vj,k is an explicit subset of possible categorical levels.

Note that if vj,k = X{j}, then variables Xj can be omitted from the rule since I(xj ∈ X{j}) = 1

for all Xj values. In practice, "simple" rules are desirable as this leaves most of the variables Xj

35

out and focuses on a few "important" variable segments. An example of a rule generated from
a CART decision tree on Figure 3 corresponding to region R4 of the tree is

r4(x) = I(x1 ∈ (t3, 1]) · I(x2 ∈ [0, t4]).

As shown above, consecutive decision tree splits fit the desired base learner structure and thus
can easily be extracted and used on their own as base learners. Note that, not only terminal
node rules can be used, but any combination of splits leading to any node in the tree can be
used.

Suppose now, we have a T binary trees {T}T1 . This results in K =
T∑
t=1

2(|Tt|−1) rules {rk(x)}K1 ,

where |Tt| is the number of terminal nodes for t-th tree. Then we can define rule ensemble as

F (x) = a0 +

K∑
k=1

akrk(x), (3.7)

where rules {rk(x)}K1 serve as the base learners and ak, k ∈ {0, . . . ,K} serve as combination
parameters from Formula (3.6).

Using now importance sampled learning ensemble (ISLE) methodology as described in (Friedman
and Popescu, 2003), one possible way to estimate the combination parameters {âk}K0 , is using
regularised linear regression on the training data

{âk}K0 = argmin
{ak}K0

n∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(x)

)
+ Λ ·

K∑
k=1

|ak|,

where L(·) is the loss function we want to minimise. The regularisation used here is Lasso
regression, which uses the prediction risk

∑n
i=1 L

(
yi, a0 +

∑K
k=1 akrk(x)

)
with an additional

constraint on the absolute size of the parameter, Λ ·
∑K

k=1 |ak|. It can be shown that when using
Lasso regression, larger penalty values Λ produce shrinkage, often setting many "unimportant"
parameters {ak}K0 to zero, effectively excluding them from regression (Tibshirani, 1996). This is
favourable since Lasso regression helps us to perform off-hand feature selection on many possible
rules used in the ensemble.

In their research, Friedman and Popescu showed that rule ensemble generated from trees with
random tree size performed well when compared to other ensemble methods. However, an ad-
ditional augmentation was proposed. Friedman and Popescu argued that the linear function is
among the most difficult functions to approximate using rules (and decision trees), requiring a

36

large number of iterations and rules to estimate accurately. They suggested that using addi-
tional linear components in the additive expansion can help deal with linear dependence without
sacrificing much predictive power, thanks to Lasso regression allowing to eliminate unnecessary
linear components. The linear augmented rule ensemble is then

F (x) = a0 +
K∑
k=1

akrk(x) +

p∑
j=1

γjxj ,

where rule ensemble additive expansion from Formula (3.7) has additional linear terms as base
learners with corresponding combination parameters γj .

Again using ISLE approach, we get that combination parameters {âk}K0 and {γ̂j}p1 can be esti-
mated using Lasso regression

({âk}K0 , {γ̂j}p1) = argmin
{ak}K0 ,{γj}p1

n∑
i=1

L

yi, a0 +
K∑
k=1

akrk(xi) +

p∑
j=1

γjxi,j

+Λ

 K∑
k=1

|ak|+
p∑

j=1

|γj |

 .

(3.8)

It is important to keep in mind that Lasso regression is very sensitive to the scale of predictors.
Thus, the normalisation of predictors should be performed prior to fitting the model. Authors
suggested to regularise variables Xj , j = 1, . . . , p using

xj ← 0.4
xj

std(xj)
,

where std(xj) is the standard deviation of the variable Xj in the data. The coefficient 0.4 is
used to scale the variable to the same influence as an average rule with uniform support (number
of observations with a given rule) on the unit interval. Authors note that scaling the rules can
be done but is seldom required since rules with very large or very small support are ultimately
defined by a small number of training observations, which is undesirable.

Additionally, since linear terms might have outlier issues, a "Winsorized" version of the linear
term should be used

W (xj) = min(δ+j ,max(δ−j , xj)),

where δ−j and δ+j are α ∈ (0, 0.5) and 1− α quantiles of the distribution of Xj , respectively.

37

4 Claim frequency modelling

This chapter focuses on modelling motor third-party liability (MTPL) claim frequency using
generalized linear models, gradient boosting machine and XGBoost. The modelling is done on
Latvian MTPL data provided by If P&C Insurance AS. Note that in Latvia, MTPL policies are
a part of a shared market, thus, the same information is available to all insurance providers in
the area at all times.

Motor third-party liability is compulsory insurance required for all vehicles registered with the
Latvian Motor Vehicle Register. In case of an accident, this insurance covers the cost of damages
done to a third party’s property or health. Claim frequency modelling should, in theory, be
the only approach capable of quantifying risk for the insurance company since claim amounts
should have little to no relation with the policyholder or vehicle specified, as only third-party
damages are compensated. Predicting claim frequency right allows the insurance company to
capture better risk from the population by giving better prices and to drive away unwanted risk
by setting a more appropriate price of insurance.

The full dataset contains 12 847 035 policies issued in 2012−2018 to private clients. The dataset
has 84 columns that can be split into 3 categories:

• Policy information columns: agreement type, agreement status, policy start and end dates,
policy duration, estimated policy issue region, number of claims and claim amounts linked
to the policy.

• Policy owner information: policy subject birth date, subject age and driving experience,
national driving penalty points and penalty notices, start and end dates for license by
vehicle category, bonus-malus class, previous bonus-malus class and the number of previous
claims.

• Policy vehicle information: vehicle age, type, seat count, mass, make, model, body type,
fuel type, mileage, engine power and volume, date of first registration and date of last
inspection.

Several columns were either duplicate columns or information stored in them was unusable or
missing. From these 84 columns, 45 were selected for further analysis and preprocessing. The
full table of selected columns, column types and column descriptions can be seen in Appendix
B.1.

38

4.1 Data and preprocessing

The initial dataset provided by If had several issues with regard to data quality. This is a common
issue with real-life data as data aggregation is done by combining data from several sources that
seldom share structure. To use this data for any kind of analysis, it needs to be preprocessed.

This dataset was quite big, just barely fitting into the memory on the machine (laptop provided
by If) used. This meant that any sort of out-of-the-box data manipulation could not be done,
and another software capable of dealing with big datasets needed to be installed. To solve this,
a local computation cluster using Apache SPARK backend and Apache Hadoop distributed file
system was set up (Apache Software Foundation, 2020; Apache Software Foundation, 2018). To
communicate to the cluster, RStudio package sparklyr (Luraschi et al., 2022) was used as the
frontend to send R commands to the cluster. This system allowed to use pipelines from package
dplyr (Wickham et al., 2022) to select, filter and modify all of the data at once, doing it quite
fast.

Preprocessing was done on column-by-column bases. Key preprocessing steps are listed below:

• All of the dates were converted from text type in format YYYY/MM/DD (but not always)
to date objects in R.

• Columns VehMake, VehModel had some of their levels aggregated into level "Other" based
on the count of observations with that level (less than 5000 were aggregated). VehModel
was dropped due to too many categorical levels.

• VehMake and Ifregion were encoded to numeric levels to ease the visualisation and model
printouts.

• Categorical columns with missing values were merged to corresponding "not available"
levels ("n/z", "n/a", etc.).

• Some of the systemic errors were fixed. For example, sometimes, Mileage was calculated
in the wrong way (StartMileage - LastMileage).

• Date-based values like age, driving experience, vehicle age, etc., were calculated and com-
pared against values already present in the data.

• Ranges of most numeric variables (excluding response) were cut to 0.995 quantiles to
exclude very large outliers.

39

• Testing scheme for date logic was developed. For example, check if the birth date is before
all other dates.

• Categorical columns were turned to factor values, where factor levels were ordered by
their count in the data (ordering by exposure was considered, but showed no difference in
ordering of levels)

• Group ID was constructed since some policies had the same information aside from claim-
related data. Group ID was used to make training and testing sets to avoid data leakage
between splits.

Note that missing values were present for most numeric variables, and for some of the categorical
variables missing values were not altered. This was intentional since gradient boosting machine
implementation in R package gbm (Greenwell et al., 2022) allows for a separate direction for
missing values, thus allowing to model even missing data.

Although some machine learning techniques are available in SPARK, the implementations avail-
able were not up to par in terms of possible loss functions, weighting etc. Implementations in
R packages gbm, xgboost (Chen et al., 2022) were used instead. This meant that in-machine
computation had to be done, so the whole data set training was impossible. Based on proposals
from If and prior modelling papers like (Henckaerts et al., 2017) or (Wüthrich, 2019), a single
financial year (2018) policies were chosen as data to be modelled. The latest financial year was
chosen since less data seemed to be missing for later years.

The final data that was modelled and analysed contained 1 644 800 rows with 19 explanatory
variables, exposure variable, number of claims as the response variable and Group ID column.
The data was split based on unique values of Group ID column into three parts: training with
proportion 0.6, validation with proportion 0.2 and testing with proportion 0.2 of the data.

4.2 Baseline models

To compare different approaches, a baseline model is needed. One such baseline is the trivial
model predicting historic average response for new observations. However, for the insurance
industry, a GLM model is widely used; thus, it is a good baseline to compare against.

This subchapter focuses on building the GLM models used as baseline models to compare different
models to. The models are fitted using the structure specified in Subchapter 1.1. Parameters

40

of the models are estimated using maximum likelihood estimation following the setup given in
Subchapter 1.3.

Note that GLM is not able to work with missing values. This means that missing data should
either be imputed or deleted. As discussed at the end of the previous subchapter, the gradient
boosting model is able to work with missing data, thus imputation of the data, although industry
standard, is forgone to showcase one of the possible advantages that can be gained from machine
learning methods.

This means that GLM models were fit on data that had all of the observations with missing
values removed. Since GLM can easily be fitted using the likelihood of the data, there is no
need for validation split to assess the fit of the model, and a bigger dataset allows for a better
likelihood fit of the model parameters. GLM models were fitted using 1 117 001 observation
(about 10.39% observation less compared to full training and validation set (1 315 720)).

A bidirectional step-wise search based on AIC (defined in Formula (3.2)) was used to find the
model. The rationale for the step-wise search was that optimising AIC allows us to find the
model best generalising to training data and hopefully generalising well in general. Additionally,
the step-wise search can be considered an automatic modelling way, similar to machine learning
models.

The model with the best AIC used these variables: FullMass, BmSubjectAge, Vehyearnew,
Mileage, Drivexpbnew, AgreementTypeCode, CntNotice, CntPenaltyPoints, FuelType,
BmClassAas, Ifregion, Policylength. Variables Vehyearnew and Drivexpbnew are transformations
of variables VehicleAge and DrivExpB with corrections from date information. This model will
be called "AIC model". The description of variables can be seen in Table 3 in Appendix B.1.

Note that no interactions were considered. This was done for three reasons. Firstly, a simple
model to compare is desirable, and interactions introduce a lot of complexity. Secondly, aside
from an exhaustive search, there are no easy ways to automate the search for interactions using
just the GLM framework. Lastly, interaction computation for some combinations of the variables
was not feasible (or in some cases possible) on the hardware used.

A second baseline model was also proposed, using the previously described GLM model as the
starting point. Following some historical findings about driver age and experience, a polynomial
relation for age and experience was considered (Valecký, 2016). In a backward step-wise search
(based on AIC), starting at the sixth-order polynomial term for each variable was considered.
The addition of polynomial terms decreased AIC further, where the lowest AIC was achieved
by the model with both variables with polynomial terms up to the fifth order. This model will

41

be called "AIC model + poly".

Both of these GLM models will be used as benchmarks to compare the performance of machine
learning models and improvement methods described in Chapter 3.

Appendix C gives an overview of both models. Model structure, coefficients and interpretation
are presented.

4.3 Modelling with GBM and XGBoost

The gathered insight can only be as good and insightful as the underlying machine learning
model is at predicting the response variable. This subchapter gives an overview of the tuning
procedure for gradient boosted machine (GBM) and XGBoost models. The models follow the
corresponding frameworks described in chapters 2.2.2 and 2.2.3. Note that these models share
the structure; however, XGBoost can be considered the more advanced and modern algorithm.

GBM model is used to showcase maidrr methods since models from R package gbm work naively
with maidrr implementation in package maidrr (Henckaerts, 2020). XGBoost model is trained
using R package xgboost. The rule ensemble implementation in R package xrf (Holub, 2022)
expects a XGBoost model as the underlying tree model.

For both models, the procedure for hyperparameter tuning was similar. First, a grid for ap-
propriate hyperparameters was created. This was done using R package dials (Kuhn and Frick,
2022). The dials package allows to specify the ranges for hyperparameters and then apply a
complete grid selection, random selection or maximal entropy selection. Maximal entropy selects
parameters in such a way that the whole space specified by the ranges is best covered. This
was used to generate 20 possible combinations of hyperparameters. Then, models were fit using
these parameters on the training portion of the data, and their performance was validated on
the validation portion of the data, using (3.1) as the error metric.

For the GBM model, 4 hyperparameters were tuned using the grid: maximum depth of each tree
in the ensemble (range 3 to 6), ensemble learning rate (range 0.001 to 0.2), minimum number of
observations in leaf node (range 1 to 987) and observation sampling rate for trees in the ensemble
(range 0.5 to 0.8). The optimal number of trees in the ensemble was found using a fraction (20%)
of training data as an additional validation data where the best number of trees had the smallest
validation error.

Using this tuning procedure, I found that the GBM model with a tree depth of 4, an ensem-
ble learning rate of 0.03311877, a minimum number of observations in a leaf node of 339, an

42

Table 1: Baseline models and machine learning models performance comparison. The test set had all rows with missing
values dropped to make model performance comparable (GBM could also predict with missing values). The trivial model
predicts training data average frequency for all observations.

Model AIC
Poisson Deviance

(Test)
Number of
parameters

Deviance
proportion

Trivial model - 0.11695364 - 104.3842%
AIC model 167150.8 0.11204148 91 100%
AIC model +
poly

166756 0.11159231 99 99.5991%

GBM - 0.11146033 - 99.4813%
XGBoost - 0.11158860 - 99.5958%

observation sampling rate of 0.6757881 and 691 trees gave the smallest validation error on the
validation portion of the data.

XGBoost is the more advanced version of gradient tree boosting and thus allows for more hy-
perparameters to be tuned. For XGBoost, 7 hyperparameters were tuned: number of variables
used to fit a tree (range ⌈

√
108⌉ to 108

3), maximum depth of trees in the ensemble (range 3 to
6), ensemble learning rate (range 0.1 to 0.3), number of trees (range 1 to 100), the minimum
number of observations in leaf node (range 1 to 987), reduction in loss to allow further splits
(range 0 to 0.2) and observation sampling rate for trees in the ensemble (range 0.5 to 0.75).

It is important to note that the XGBoost model, as implemented in package xgboost, did not
allow for missing values in data and all data has to be numerical, thus one-hot encoding (splitting
all levels of categorical variables into separate binary variables) needed to be applied. Doing so
takes the number of variables to 108. Note also that only a small number of trees (up to 100)
were considered since more trees produce more rules, thus increasing the computation intensity
of rule ensemble methods.

The optimal XGBoost model had 35 variables for each tree, depth of 4, a learning rate of
0.28255206, 91 trees in the ensemble, at least 496 observations in the leaf nodes, reduction in
loss of at least 0.06351081 and a sampling rate of 0.68568611 for each tree.

A comparison between the resulting models can be seen in Table 1. Since all models use variables
and data differently, a unifying test set needed to be created. This meant removing all missing
values from the testing set since both GLM and XGBoost models can not work with missing
values. Based on the test set performance (using again (3.1)), we can see that the GBM model
is clearly best, followed by the XGBoost model and AIC model with polynomial terms. The
base AIC model is worse compared to other non-trivial models. Taking now the AIC model

43

Poisson deviance as 100%, then the polynomial terms improve the Poisson deviance by 0.4009%,
XGBoost by 0.4042% and GBM by 0.5187%. The trivial model is about 4.3842% worse than the
AIC model, showing that variables are able to describe the response in some way.

The accuracy improvements machine learning methods provided were much smaller than ex-
pected. However, it is important to remember that a better choice and tuning of hyperparame-
ters and some restrictions on the model structure can further improve these models. This is not
the main aim of the thesis, and no further search for better models is done.

44

5 Machine learning applications

In the previous chapter, we fitted machine learning models which were able to predict the response
variable better than baseline models, based on Poisson deviance in Formula (3.1). This chapter
focuses on extracting insight from machine learning models and making interpretable models
based on this insight. We will be using the maidrr approach and rule ensemble for this.

5.1 maidrr modelling

We will apply the maidrr method to GBM model produced in the previous chapter. The GBM
model from package gbm works natively with package maidrr since the authors of the package
developed it with gbm package in mind. Although maidrr is model agnostic and any machine
learning model can, in theory, be used.

Using the GBM model, we first extract the partial dependence for all variables with non-zero
importance. The relative variable importance in Figure 4 corresponds to the GBM model trained
in the previous chapter. Based on this, all variables besides AgrStatus, IsTrainingEquipment
and Terminated had non-zero variable importance and thus, partial dependence for them was
computed. Partial dependence was computed using a sample of 100 000 observations from the
training set due to computational intensity. This sample is, however, 10 times bigger than the
sample used by maidrr package by default.

Then, using the implementation of Algorithm A.2, the optimal grouping penalties were selected.
Optimal penalties are the solution to the problem, as seen in Formula (3.5), where the optimal
number of groups k∗j is unknown. This problem is separately solved for main effects (single
variable) and interaction variable effects.

This involves taking a set of potential grouping penalties, applying the penalty and seeing how
well the surrogate GLM performs using cross-validation. Several runs with different sets of
potential grouping penalties were done. For main effects (single variable), the optimal penalty
was λmain = 5 · 10−7 and for interaction effects, the optimal penalty was λintr = 9 · 10−6. The
search range for both was 10−12 to 10−3, so both penalties were around the middle of the search
range. Note that smaller penalties mean more grouping levels.

One key advantage of maidrr is that it can automatically perform feature and interaction se-
lection. For optimal penalties λmain and λintr, 15 variables were selected, and in addition, 6
interactions using these variables were selected. The selected variables with optimal groupings
were Ifregion (17 groups), CntPenaltyPoints (9), VehMake (15), BmClassAas (14), Drivexpbnew

45

(11), BmSubjectAge (24), Mileage (8), Vehyearnew (7), FullMass (6), FuelType (3), CntNotice
(3), Policylength (2), EnginePower (3), AgreementTypeCode (2), SeatCount(2). The interac-
tions selected for the surrogate model were CntPenaltyPoints and BmSubjectAge (13 groups),
Ifregion and CntPenaltyPoints (11), Ifregion and BmSubjectAge (13), VehMake and BmSubjec-
tAge (4), Drivexpbnew and BmSubjectAge (5), Ifregion and BmClassAas (7). This model will
be called maidrr surrogate (encoded as "Surrogate" in tables). Appendix D has plots of grouped
partial dependence for all of these variables.

It is important to note that the underlying GBM model was able to deal with missing values for
variables, and this ability is also present in the surrogate. Namely, the surrogate model has a
separate group containing missing values where appropriate or missing values are grouped with
some group of values. Sometimes bigger values of variables are also attached to this group with
missing values, indicating that missing values act similarly to those bigger values. One such
example is FullMass variable, where group [NA,NA] also contains vehicles with 3450 or greater
full mass.

Detailed output and interpretation of the surrogate model can be found in Appendix E.1.

Now that we know what kind of groups can be used to imitate the machine learning model,
augmentation for the underlying AIC model can be tested. To start out with, a forward search
based on AIC was done starting from the AIC model with polynomial terms - for each grouping
augmentation (for example, Ifregion variable grouping into 17 groups), AIC model equivalent
variable was replaced by grouped variable coming from the maidrr surrogate model and model
AIC was calculated. All of the different groupings were tested, and the augmentation providing
the best gain in AIC was adopted. Then the process was repeated until there was no gain in
AIC.

With this procedure, these groupings were adopted in this order: grouping for Mileage, then
Drivexpbnew, then interaction between CntPenaltyPoints and BmSubjectAge, then VehMake
grouping, then interaction between Ifregion and CntPenaltyPoints, then Vehyearnew, then Cnt-
Notice, then FullMass, then interaction between Ifregion and BmClassAas, then interaction be-
tween Ifregion and BmSubjectAge, then interaction between VehMake and BmSubjectAge, then
EnginePower grouping, then FuelType grouping and lastly SeatCount grouping. This model will
be called maidrr grouping augmented AIC model (encoded as "AIC model + group").

In addition to maidrr grouping, a second augmentation was proposed and tested. In some cases,
fitting of constant to grouped value does not seem appropriate. For example, for Drivexpbnew
variable (Figure 6), fitting a constant value for a group formed between 0 and 4 is not appropriate

46

since there is a clear non-constant drop in partial dependence for this range. To fix this, a
piecewise linear approximation can be used. Using maidrr grouping augmented AIC model, each
of the grouped ordered and numeric variables were replaced by their piecewise linear alternative
one by one. If the piecewise alternative improved the AIC of the model, it was adopted. In
the end, only one piecewise alternative improved AIC: Drivexpbnew. This model will be called
maidrr grouping and spline augmented AIC model (encoded as "AIC model + spline").

A more detailed look into both maidrr grouping augmented, grouping and spline augmented
AIC models are presented in Appendix E.2 and E.3, respectively.

5.2 Rule ensemble modelling

For rule ensemble, an implementation available in R package xrf was used. The procedure is
carried out as described in Subchapter 3.3; however, the author of package xrf built the package
focusing on fitting and extracting rules from the XGBoost model. Additionally, the author
implemented rule duplication removal and rule deoverlapping.

Rule deoverlapping means fixing the structure of rules to have non or minimal overlap in seg-
mented data produced by these rules. In practice, this means introducing additional rules and
altering the original extracted rules to make disjointed segments of data. In this case, deover-
lapping of rules proved to be computationally infeasible and thus was not used.

It is important to note that the out-of-the-box package xrf was not able to produce a model with
satisfactory assumptions. To fix this, three things were done: a way to add XGBoost model
trained outside of the package was implemented, Lasso regression model options like modelling
family being Poisson was implemented, and linear term normalisation was added. Extracted
rules will remain on the original scale since those rules can more easily be interpreted.

The XGBoost model trained in the previous chapter was used to make the rule ensemble. From
this model, 1173 non-duplicate rules were extracted. Using these rules and the linear terms, a
penalty parameter search was conducted. The penalty parameters considered were default values
from glmnet package (Lasso regression backend package) (Friedman, Hastie, and Tibshirani,
2010), which were 100 logarithmically uniform values from Λmax to Λmin = 0.0001 · Λmax where
Λmax is such penalty value for which all coefficients are 0. For this data we got that Λmax =

1.510447 · 10−2. These penalty parameter values correspond to the penalty Λ in Formula 3.8.

The fitted model finds two "optimal" penalty parameters Λmin = 0.00040119 and Λ1se =

0.00111633. First corresponds to the penalty parameter achieving the lowest cross-validation er-

47

ror, while Λ1se corresponds to the larger (in value) penalty parameter achieving cross-validation
error 1 standard error (about 0.00107538 or 0.3% of the smallest cross-validation Poisson de-
viance (Formula (3.1))) away from the minimum. These models will be called rule fit model with
minimum parameter (encoded as "RuleFit min") and rule fit model with 1se parameter (encoded
as "RuleFit 1se"), respectively.

Rule fit model with minimum parameter had 377 non-zero coefficients for terms in regression.
Out of these terms, 341 were for rules and 35 for original terms. For rule fit model with 1se
parameter 146 terms had non-zero coefficients with 137 for rules and 8 for original terms. We
can therefore say that about half of the additional non-zero terms improve the deviance by only
1 standard error amount, showing that adding more terms gives a small gain in deviance. It is
also important to note that the normalisation of original numeric terms, as suggested in paper
(Friedman and Popescu, 2008), was done.

A more detailed overview and a sample of rules and their coefficients of both rule fit models are
available in Appendix F.1 and F.2.

5.3 Model comparison

This subchapter focuses on showcasing the difference in model accuracy metrics. Two metrics
will be used to compare the models: Poisson deviance from Formula (3.1) on the test set as the
performance measure and AIC as a goodness of fit (GOF) measure.

Comparison of accuracy measures based on previously unseen data is a standard approach for
machine learning models. However, since one of the points of interest is to see if proposed model
improvements improve the underlying model, AIC as the goodness of fit metric is used. For
this, all the different GLM models will be trained on the same data, and their AIC value will
be computed to asses their future performance.

To compare the models, a unified test set is necessary. Since all of the models need variables in
different ways, two additional copies of the test set needed to be made. All of these test sets
are identical in terms of observation ordering etc., but their underlying structure differs, like
having one-hot encoding, normalisation of terms, etc. The resulting test data sets have 294 777

observations.

Additionally, it is important to note that maidrr surrogate model interaction terms are prone to
producing additional missing values due to previously unseen combinations of interaction vari-
ables present in test data. This fact can not be avoided; thus, the observations producing these

48

Table 2: Model comparison based on AIC on the training set and Poisson deviance on the test set. The test set was unified
to be fair for all models, as different models require different data structures. The test set contains 241 020 observations.
AIC was found with all models retrained on training data where all missing values were omitted.

Model name
AIC

(training)
Poisson Deviance

(Test)
Number of
parameters

Trivial model - 0.11695364 -
AIC model 167150.8 0.11204148 91

AIC model +
poly

166756 0.11159231 99

GBM - 0.11146036 -
Surrogate 166279.7 0.11148752 156
Surrogate

No interaction
166432.0 0.11143346 109

AIC model +
group

166300.3 0.11145320 175

AIC model +
spline

166294.6 0.11144887 181

XGBoost - 0.11158860 -
RuleFit min 165945.1 0.11143408 377
RuleFit 1se 166479.5 0.11169946 146

errors were omitted. Final test data sets had 241 020 observations. This data was acceptable for
all models; thus, deviance comparison was possible and fair.

In Table 2, a comparison between models is presented. As discussed earlier, the test set was
made fair and comparable for all models. AIC value for likelihood-based models was found by
retraining all models to the training data with all missing data removed. This makes the AIC

values comparable. The number of parameters for rule fit models were chosen to be the number
of non-zero coefficients since Lasso is used for feature selection in this model.

Based on the results from Table 2, we can see that all considered "augmented" models perform
better than the basic AIC model. This is good to see since we are considering somewhat more
complex models.

Moving deeper, we can see that the surrogate model containing only categorical variables is much
better in terms of Poisson deviance compared to AIC model with polynomial terms. Based on
AIC, the surrogate model is clearly better (by 476) compared to the AIC model with polynomial
terms.

49

However, something rather odd is also happening. We can see that the surrogate model without
interactions is the best model based on Poisson deviance. This is odd since the added interactions
should, in theory, improve the fit of the model. There is no clear explanation why this model
performs best on the test data. The fact that this model performs better than the underlying
machine learning model is also strange since the underlying structure for both of these models is
similar (constant prediction for a given segment of data). This might hint that the GBM model
could be further improved.

Another thing that is strange is the fact that the AIC model with maidrr grouping augmentation
and the AIC model with grouping and spline augmentation perform better than the underlying
machine learning model, GBM, they were built on. One possible explanation for this is one of
the disadvantages mentioned in Subchapter 2.1.3, related to the approximation of linear relations
using splits. Both GBM and XGBoost models are very shallow models (depth of 4 for both) and
have quite a low number of iterations (for GBM 691, for XGBoost 91). With a low number of
iterations, it is hard to have enough splits related to linear terms; thus, only a rough sense of
linear relation is captured.

I believe this is also supported by the fact that some of the terms are kept linear for both grouping
augmented and grouping and spline augmented models.

A similar case holds up for XGBoost and corresponding rule fit models. Rule fit models again
outperform the machine learning model they are based on, but they also contain the linear terms,
thus capturing the linear relation, not captured by the tree ensemble method.

Rule fit model with a minimum parameter has similar deviance compared to the surrogate model
with no interactions, showing that rules are able to describe the data in a similar way. However,
we can see that rule fit model is not that stable since 1 standard error of cross-validation Poisson
deviance is enough to make a model worse than the AIC model with polynomial terms (based
on test deviance). This indicates that the underlying structure, although good in some cases, is
very reliant on the complexity allowed by the penalty parameter. I believe that in order to make
this model more stable, a better machine learning model and rules are needed.

However, looking into the rules that have non-zero coefficients has proven very insightful, show-
casing which possible combination of variables might be used in ratemaking. More on this is
discussed in the Subchapter 5.4.

Since all non-machine-learning models are ultimately likelihood based GLM models, then taking
into account the number of parameters, we get that actually rule fit model with minimum
parameter is the best, followed by the maidrr surrogate model. The difference in AIC between

50

these two models is 334.6, which is quite a significant decrease. The fact that the rules with
some linear terms beat out piecewise constant fit is interesting. Rules are able to describe deeper
interactions, however, at the cost of losing sight of simple constant or non-linear relations.

It is important to note that the best model based on deviance is not the best model based on
AIC. The surrogate model without interactions was just barely able to beat rule fit model with
minimum parameter based on test deviance. It might be that the interactions were not so present
in the test data, but in training data it is clear that interactions are important and thus should
be included if the best fit based on likelihood is desired.

Comparing the two approaches of gathering insight, we can see that maidrr is able to produce
a more stable model based on purely categorical variables. However, the interpretation of inter-
action is much better for rule fit models. Rules give you a concrete idea how a combination of
different variables affects the claim frequency, while with surrogates, you have to be very precise
when interpreting the interaction for a particular observation. Overall it appears that we were
able to gather some insight from the way machine learning models use variables and produce
meaningful and, most importantly, interpretable augmentations for industry standard models.

5.4 Discussion

In this subchapter, a general discussion about machine learning modelling and the results of this
thesis are discussed. This subchapter is based on the author’s experience working with this data
and the problem at hand.

To start out with, all of this work has been plagued by long waiting times. Starting out, I knew
machine learning would take considerably more time than classic statistical models like GLM;
however, I severely underestimated the time required to run some of the procedures and methods.

As evident in the method and model description, most of the algorithms are quite computation-
ally intense (at least O(n2) for most), and it does not help that their implementations seldom
allow for parallelisations running on one core of the machine by default. With my limited knowl-
edge and skills, I was, however, able to improve some of the underlying code for maidrr package
allowing me to run some of the code in parallel. This showcases well that working with machine
learning requires additional skills in writing code and understanding the underlying structure of
the method being used.

Continuing on this topic of computational difficulties, I was able to leverage the high-performance
computational cluster available to the University of Tartu, thus allowing me to run several model

51

training sessions at the same time (University of Tartu, 2018). The cluster also allowed to more
easily run the parallel computation since parallelisation in Windows (Bott and Stinson, 2019) is
not allowed by default. Overall, even though all of the code could be run on a single core on a
machine with only 16 GB of ram, it would have taken significantly longer since every job would
need to be carefully planned and executed.

In general, working with machine learning on insurance data has proven difficult since most of
the methods and implementations I found did not have the capabilities to model insurance data.
They did not allow for the use of Poisson or custom objective (loss) function, thus, count or
claim frequency modelling would not be optimal. The same goes for claim amount modelling
using Gamma or other heavy-tailed distributions.

However, simply having a custom or Poisson objective was also not enough since modelling claim
frequency requires us to use either offset for the response (given the right link between response
and prediction function) or the ability to use weights for model fitting. Having both of these
requirements proved to be very rare. In my experience, working in R helped with this since more
implementations with both requirements were available (compared to Python libraries).

This shows that machine learning, although powerful in cases where normal or binomial distribu-
tion is used, is still not ripe enough to be freely applied to the insurance field and problems. There
were no out-of-the-box solutions, and every approach and method needed a lot of additional work
and prior knowledge to put to work predicting insurance data.

Regarding the results of the applied methods, I feel quite hopeful. I was able to discover similar
groupings for variables used in ratemaking at the company presently, and I did this in a few
months while they have been doing and developing their pricing structure for years. This is one
of the key developments I achieved with maidrr and presented to the pricing unit at If.

In addition to grouping structure, If was also very interested in the rules found through rule
ensembles. Rules allow us to find a segment of data historically performing abnormally compared
to the rest of the observations, thus giving a reason to put additional restrictions in place for
pricing this part of the population. With additional analysis, these combinations of variables
might allow to gain an edge in insurance pricing in a market where all of the data is shared.
Something different and more advanced has to be done to gain an edge in such a competitive
environment, and I and my supervisor at If feel that this might be one of these things.

Lastly, I would like to comment that this research and thesis is by no means perfect, but it is
a proof of concept to showcase what possible alternatives and additions machine learning can
provide in the age of computing. It is clear that the machine learning field will keep on evolving.

52

However, I do not see the restriction of model and result interpretability being lifted any time
soon in the insurance field. This way, a need for tools to make machine learning interpretable
and, in general, interpretable machine learning will only grow in time. Machine learning is the
future, but interpretable machine learning will help us to get there and understand it.

I would like to finish this discussion with a quote by Christoph Molnar: "When opaque machine
learning models are used in research, scientific findings remain completely hidden if the model
only gives predictions without explanations. To facilitate learning and satisfy curiosity as to why
certain predictions or behaviours are created by machines, interpretability and explanations are
crucial. Of course, humans do not need explanations for everything that happens. For most
people, it is okay that they do not understand how a computer works. Unexpected events make
us curious." (Molnar, 2022).

53

Conclusion

The purpose of this thesis was to introduce and showcase two ways to extract insight from
machine learning models trained to evaluate risk in insurance pricing. To do this, the first 2
chapters of the thesis focused on introducing the current main statistical model, the generalized
linear model, giving an overview of decision trees and tree-based boosting ensembles like gra-
dient boosting machine and XGBoost. In Chapter 3, model metrics and insight statistics were
discussed. After that, model agnostic data-driven surrogate models (maidrr) and rule ensemble
methods were introduced and explained. In the last two chapters, all models and methods were
applied to motor third party liability data coming from Latvia. The models were trained on the
training split of the data, the resulting models were briefly explained, and their performance was
assessed using the testing split of the data.

First, 4 models were fit to the training data: a GLM model based on step-wise AIC search,
the AIC search model with additional polynomial terms (baseline models), gradient boosted
machine and XGBoost as the machine learning models. The resulting machine learning models
were better in terms of test set deviance compared to the baseline models. This gave reason to
extract insight from these machine learning models and an additional 6 models were proposed:
surrogate model, surrogate model without interactions, grouping augmented AIC search model,
grouping and spline augmented AIC search model and two rule ensemble models with different
penalty parameters.

All of the proposed machine learning insight augmented models ended up being better or compa-
rable in accuracy to baseline generalized linear models. Based on likelihood metrics, the proposed
augmentations proved to produce models that are better able to capture the likelihood of the
data. Some strange behaviour was also observed, where some augmentations performed better
on the test set compared to the original machine learning models. However, both ways of using
machine learning models proved to be useful in different cases: maidrr is good for feature selec-
tion and grouping of these features and rule ensemble is good for searching for combinations of
variables that can be priced differently.

This thesis was able to showcase two possible ways machine learning could be used to augment
current practices of ratemaking. Both of the methods used show potential in their respective
strengths of feature grouping for maidrr and combination search for rule ensemble. In the case
of maidrr, the approach can be used for any machine learning model, and thus advancements in
machine learning models applicable to the insurance field will also improve the surrogate model
that can be evaluated. Rule ensembles help to gather ideas for further analysis and strategies.

54

References

1.10. Decision Trees (Jan. 2023). [Online; accessed 12. Jan. 2023]. url: https://scikit-
learn.org/stable/modules/tree.html.

Apache Software Foundation (July 20, 2018). Hadoop. Version 2.7.7. url: https://

hadoop.apache.org.
– (June 18, 2020). Spark. Version 2.3.4, 3.0.3. url: https://spark.apache.org.
Bott, Ed and Craig Stinson (2019). Windows 10 inside out. Microsoft Press.
Breiman, Leo (Aug. 1996). “Bagging predictors”. In: Mach. Learn. 24.2, pp. 123–140. issn:

1573-0565. doi: 10.1007/BF00058655.
– (Feb. 1999). Using Adaptive Bagging to Debias Regressions. Technical Report 547.

Berkeley, CA 94720: University of California at Berkeley, Statistics Department.
Chen, Tianqi and Carlos Guestrin (Mar. 2016). “XGBoost: A Scalable Tree Boosting

System”. In: arXiv. doi: 10.1145/2939672.2939785. eprint: 1603.02754.
Chen, Tianqi, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho,

Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, Mu Li, Junyuan Xie, Min Lin,
Yifeng Geng, Yutian Li, and Jiaming Yuan (2022). xgboost: Extreme Gradient Boosting.
R package version 1.6.0.1. url: https://CRAN.R-project.org/package=xgboost.

de Jong, Piet and Gillian Z. Heller (Feb. 2008). Generalized Linear Models for Insurance
Data. Cambridge, England, UK: Cambridge University Press. isbn: 978-0-52187914-
9. url: https : / / www . cambridge . org / lv / academic / subjects / statistics -

probability/statistics-econometrics-finance-and-insurance/generalized-

linear-models-insurance-data?format=HB\&isbn=9780521879149.
Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2010). “Regularization Paths for

Generalized Linear Models via Coordinate Descent”. In: Journal of Statistical Software
33.1, pp. 1–22. doi: 10.18637/jss.v033.i01. url: https://www.jstatsoft.org/
v33/i01/.

Friedman, Jerome H. (2001). “Greedy function approximation: A gradient boosting ma-
chine.” In: The Annals of Statistics 29.5, pp. 1189 –1232. doi: 10.1214/aos/1013203451.
url: https://doi.org/10.1214/aos/1013203451.

– (2002). “Stochastic gradient boosting”. In: Computational Statistics & Data Analysis
38.4. Nonlinear Methods and Data Mining, pp. 367–378. issn: 0167-9473. doi: https:

55

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://hadoop.apache.org
https://hadoop.apache.org
https://spark.apache.org
https://doi.org/10.1007/BF00058655
https://doi.org/10.1145/2939672.2939785
1603.02754
https://CRAN.R-project.org/package=xgboost
https://www.cambridge.org/lv/academic/subjects/statistics-probability/statistics-econometrics-finance-and-insurance/generalized-linear-models-insurance-data?format=HB\&isbn=9780521879149
https://www.cambridge.org/lv/academic/subjects/statistics-probability/statistics-econometrics-finance-and-insurance/generalized-linear-models-insurance-data?format=HB\&isbn=9780521879149
https://www.cambridge.org/lv/academic/subjects/statistics-probability/statistics-econometrics-finance-and-insurance/generalized-linear-models-insurance-data?format=HB\&isbn=9780521879149
https://doi.org/10.18637/jss.v033.i01
https://www.jstatsoft.org/v33/i01/
https://www.jstatsoft.org/v33/i01/
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2

//doi.org/10.1016/S0167-9473(01)00065-2. url: https://www.sciencedirect.
com/science/article/pii/S0167947301000652.

Friedman, Jerome H. and Bogdan E. Popescu (Oct. 2003). “Importance Sampled Learning
Ensembles”. In: ResearchGate. url: https://www.researchgate.net/publication/
2888930_Importance_Sampled_Learning_Ensembles.

– (Sept. 2008). “Predictive learning via rule ensembles”. In: The Annals of Applied Statis-
tics 2.3. doi: 10.1214/07- aoas148. url: https://doi.org/10.1214\%2F07-

aoas148.
Greenwell, Brandon, Bradley Boehmke, Jay Cunningham, and GBM Developers (2022).

gbm: Generalized Boosted Regression Models. R package version 2.1.8.1. url: https:
//CRAN.R-project.org/package=gbm.

Hardin, James W. and Joseph M. Hilbe (Apr. 2018). Generalized Linear Models and
Extensions: Fourth Edition. Stata Press. isbn: 978-1-59718225-6. url: https://www.
amazon.com/Generalized-Linear-Models-Extensions-Fourth/dp/1597182257.

Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. New York, NY, USA:
Springer. isbn: 978-0-38784884-6. url: https://hastie.su.domains/ElemStatLearn/.

Henckaerts, Roel (2020). maidrr: Model-Agnostic Interpretable Data-driven suRRogate.
https://henckr.github.io/maidrr/, https://github.com/henckr/maidrr.

Henckaerts, Roel, Katrien Antonio, Maxime Clijsters, and Verbelen Roel (Jan. 2017). “A
Data Driven Binning Strategy for the Construction of Insurance Tariff Classes”. In:
SSRN Electronic Journal. issn: 1556-5068. doi: 10.2139/ssrn.3052174.

Henckaerts, Roel, Katrien Antonio, and Marie-Pier Côté (2020). When stakes are high: bal-
ancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suR-
Rogates. doi: 10.48550/ARXIV.2007.06894. url: https://arxiv.org/abs/2007.
06894.

Henckaerts, Roel, Marie-Pier Côté, Katrien Antonio, and Roel Verbelen (Apr. 2019).
“Boosting insights in insurance tariff plans with tree-based machine learning methods”.
In: arXiv. doi: 10.48550/arXiv.1904.10890. eprint: 1904.10890.

Holub, Karl (2022). xrf: eXtreme RuleFit. R package version 0.2.2. url: https://CRAN.R-
project.org/package=xrf.

56

https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/https://doi.org/10.1016/S0167-9473(01)00065-2
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.sciencedirect.com/science/article/pii/S0167947301000652
https://www.researchgate.net/publication/2888930_Importance_Sampled_Learning_Ensembles
https://www.researchgate.net/publication/2888930_Importance_Sampled_Learning_Ensembles
https://doi.org/10.1214/07-aoas148
https://doi.org/10.1214\%2F07-aoas148
https://doi.org/10.1214\%2F07-aoas148
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://www.amazon.com/Generalized-Linear-Models-Extensions-Fourth/dp/1597182257
https://www.amazon.com/Generalized-Linear-Models-Extensions-Fourth/dp/1597182257
https://hastie.su.domains/ElemStatLearn/
https://doi.org/10.2139/ssrn.3052174
https://doi.org/10.48550/ARXIV.2007.06894
https://arxiv.org/abs/2007.06894
https://arxiv.org/abs/2007.06894
https://doi.org/10.48550/arXiv.1904.10890
1904.10890
https://CRAN.R-project.org/package=xrf
https://CRAN.R-project.org/package=xrf

Kuhn, Max and Hannah Frick (2022). dials: Tools for Creating Tuning Parameter Values.
R package version 1.1.0. url: https://CRAN.R-project.org/package=dials.

Lamport, Leslie (1994). LATEX: a Document Preparation System. 2nd ed. Massachusetts:
Addison Wesley.

Luraschi, Javier, Kevin Kuo, Kevin Ushey, JJ Allaire, Hossein Falaki, Lu Wang, Andy
Zhang, Yitao Li, Edgar Ruiz, and The Apache Software Foundation (2022). sparklyr: R
Interface to Apache Spark. R package version 1.7.8. url: https://CRAN.R-project.
org/package=sparklyr.

Molnar, Christoph (2022). Interpretable Machine Learning. A Guide for Making Black Box
Models Explainable. 2nd ed. url: https://christophm.github.io/interpretable-
ml-book.

Murdoch, W. James, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu (Oct.
2019). “Definitions, methods, and applications in interpretable machine learning”. In:
Proc. Natl. Acad. Sci. U.S.A. 116.44, pp. 22071–22080. doi: 10.1073/pnas.1900654116.

Nelder, J. A. and R. W. Wedderburn (1972). “Generalized linear models”. In: Journal
of the Royal Statistical Society. Series A (General) 135.3, 370–384. doi: 10.2307/
2344614.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria. url: https://www.R-project.
org/.

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In: Jour-
nal of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267–288. issn:
00359246. url: http://www.jstor.org/stable/2346178 (visited on 01/31/2023).

University of Tartu (2018). UT Rocket. doi: 10.23673/PH6N-0144.
Valecký, Jiří (May 2016). “Modelling Claim Frequency in Vehicle Insurance”. In: Acta

Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 64.2, pp. 683–689.
issn: 1211-8516. doi: 10.11118/actaun201664020683.

Wang, Haizhou and Mingzhou Song (Dec. 2011). “Ckmeans.1d.dp: Optimal k-means Clus-
tering in One Dimension by Dynamic Programming”. In: R Journal 3.2, pp. 29–33. issn:
2073-4859. doi: 10.32614/RJ-2011-015.

57

https://CRAN.R-project.org/package=dials
https://CRAN.R-project.org/package=sparklyr
https://CRAN.R-project.org/package=sparklyr
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1073/pnas.1900654116
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://www.R-project.org/
https://www.R-project.org/
http://www.jstor.org/stable/2346178
https://doi.org/10.23673/PH6N-0144
https://doi.org/10.11118/actaun201664020683
https://doi.org/10.32614/RJ-2011-015

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller (2022). dplyr: A
Grammar of Data Manipulation. R package version 1.0.10. url: https://CRAN.R-
project.org/package=dplyr.

Wüthrich, Mario V. (Jan. 2019). “From Generalized Linear Models to Neural Networks,
and Back”. In: SSRN Electronic Journal 1. issn: 1556-5068. doi: 10.2139/ssrn.

3491790.

58

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.2139/ssrn.3491790
https://doi.org/10.2139/ssrn.3491790

Appendix

Appendix A maidrr algorithms

In this appendix, two of the key algorithms for the maidrr method are given. The first algorithm
focuses on generating a suitable surrogate model if penalty parameters are given and the second
algorithm shows how to find optimal penalty parameters.

A.1 maidrr surrogate model algorithm

In this section, a copy of the maidrr algorithm as seen in (Henckaerts, Antonio, and Côté, 2020)
is presented. Note that here we assume optimal penalty values λmain, λintr are already found.

Algorithm 2 maidrr surrogate algorithm
Input: data, λmain, λintr, k, h

//Main effect loop
for j = 1 to p do

Calculate ˆPD(x{j}) for all unique values of variable Xj in the data.
Apply DP algorithm to group values of Xj using k∗{j} = argmin

k{j}∈{1,...k}
Eq. (3.5) for λ = λmain

Define Xc
j as the the grouped version of Xj with k∗{j} groups

end for
Feature selection: Feat = {j|k∗{j} > 1}
// Interaction effect loop
Interaction selection: I = {(l,m)|l,m ∈ Feat, and H2

{l,m} ≥ h}
for (a, b) in I do

Calculate ˆPD(x{a,b}) for all unique combinations of variables Xa and Xb in the data.
Apply DP algorithm to group interactions of (X{a,b}) using
k∗{a,b} = argmin

k{a,b}∈{1,...k}
Eq. (3.5) for λ = λintr

Define Xc
a:b as the the grouped version of interaction variable Xa:b with k∗{a,b} groups

end for
Interaction selection Ieat = I\{(l,m)|k∗{l,m} = 1}
Fit GLM to response using features Xc

j for j ∈ Feat and interaction Xc
a:b for (a, b) ∈ Ieat

Output: Surrogate GLM

59

A.2 maidrr penalty tuning algorithm

In this section, an algorithm for maidrr penalty tuning is presented. This algorithm is not ex-
plicitly stated in (Henckaerts, Antonio, and Côté, 2020) but is implemented in the corresponding
R package maidrr (Henckaerts, 2020). Denote λ⃗main and λ⃗intr as grids of potential values for
corresponding penalty parameters.

Algorithm 3 maidrr penalty tuning algorithm
Input: data, λ⃗main, λ⃗intr, k, h, kfold

Split data randomly into kfold parts.
//Main penalty tuning
for λ in λ⃗main do

for i in 1 to kfold do
Use part i of the data as validation split and rest as training split
Run main effect loop of maidrr surrogate Algorithm 2 with λmain = λ

Fit a surrogate GLM using variables Xc
j for j ∈ Feat on the training split

Calculate the validation split loss Vali

Save Vali corresponding to penalty λ and fold i

end for
end for
∀λ ∈ λ⃗main calculate cverri = 1

kfold

∑kfold

i=1 Vali.

Select λ∗
main = min

cverri

λ⃗main.

// Interaction penalty tuning
Using F ∗

eat and groupings k∗{j}, j = 1, . . . , p belonging to λ∗
main

for λ in λ⃗intr do
for i=1 to kfold do

Use part i of the data as validation split and rest as training split
Run interaction effect loop of maidrr surrogate Algorithm 2 with λintr = λ

Fit a surrogate GLM using variables Xc
j for j ∈ F ∗

eat and interactions Xc
a:b for (a, b) ∈ Ieat on the training split

Calculate the validation split loss Vali

Save Vali corresponding to penalty λ and fold i

end for
end for
∀λ ∈ λ⃗intr calculate cverri = 1

kfold

∑kfold

i=1 Vali.

Select λ∗
intr = min

cverri

λ⃗intr.

Fit GLM to response using features Xc
j for j ∈ F ∗

eat and interactions Xc
a:b for (a, b) ∈ I∗eat corresponding to penalties

λ∗
main and λ∗

intr using all of the data.

Output: Surrogate GLM with tuned values of penalties λ∗
main and λ∗

intr

60

Non-exclusive licence to reproduce thesis and make thesis public

I, Artur Tuttar,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives until
the expiry of the term of copyright, Extending generalized linear models in insurance with
machine learning techniques, supervised by Meelis Käärik.

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 4.0, which allows, by
giving appropriate credit to the author, to reproduce, distribute the work and communicate
it to the public, and prohibits the creation of derivative works and any commercial use of
the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Artur Tuttar
16.05.2023

61

	Introduction
	Generalized linear models
	Model structure
	Modelling using GLM
	Parameter estimation
	Count and frequency data modelling

	Tree models
	Decision trees
	Data partitioning
	Regression trees
	Advantages and disadvantages of trees

	Boosting
	Gradient descent
	Gradient Boosting
	XGBoost

	Machine learning insights
	Measures and statistics
	Model performance metrics
	Variable importance
	Partial dependence
	Friedman's H-statistic

	Model-Agnostic Interpretable Data-driven suRRogates (maidrr)
	Rule ensemble

	Claim frequency modelling
	Data and preprocessing
	Baseline models
	Modelling with GBM and XGBoost

	Machine learning applications
	maidrr modelling
	Rule ensemble modelling
	Model comparison
	Discussion

	Conclusion
	References
	Appendix
	maidrr algorithms
	maidrr surrogate model algorithm
	maidrr penalty tuning algorithm

